Timezone: »

 
Poster
Online Control of the False Coverage Rate and False Sign Rate
Asaf Weinstein · Aaditya Ramdas

Tue Jul 14 10:00 AM -- 10:45 AM & Tue Jul 14 09:00 PM -- 09:45 PM (PDT) @ None #None
The reproducibility debate has caused a renewed interest in changing how one reports uncertainty, from $p$-value for testing a null hypothesis to a confidence interval (CI) for the corresponding parameter. When CIs for multiple selected parameters are being reported, the analog of the false discovery rate (FDR) is the false coverage rate (FCR), which is the expected ratio of number of reported CIs failing to cover their respective parameters to the total number of reported CIs. Here, we consider the general problem of FCR control in the online setting, where one encounters an infinite sequence of fixed unknown parameters ordered by time. We propose a novel solution to the problem which only requires the scientist to be able to construct marginal CIs. As special cases, our framework yields algorithms for online FDR control and online sign-classification procedures that control the false sign rate (FSR). All of our methodology applies equally well to prediction intervals, having particular implications for selective conformal inference.

Author Information

Asaf Weinstein (The Hebrew University of Jerusalem)
Aaditya Ramdas (Carnegie Mellon University)

Aaditya Ramdas is an assistant professor in the Departments of Statistics and Machine Learning at Carnegie Mellon University. These days, he has 3 major directions of research: 1. selective and simultaneous inference (interactive, structured, post-hoc control of false discovery/coverage rate,…), 2. sequential uncertainty quantification (confidence sequences, always-valid p-values, bias in bandits,…), and 3. assumption-free black-box predictive inference (conformal prediction, calibration,…).

More from the Same Authors