Timezone: »
Poster
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun · Xiaolong Wang · Zhuang Liu · John Miller · Alexei Efros · University of California Moritz Hardt
Wed Jul 15 10:00 AM -- 10:45 AM & Wed Jul 15 11:00 PM -- 11:45 PM (PDT) @ Virtual #None
In this paper, we propose Test-Time Training, a general approach for improving the performance of predictive models when training and test data come from different distributions. We turn a single unlabeled test sample into a self-supervised learning problem, on which we update the model parameters before making a prediction. This also extends naturally to data in an online stream. Our simple approach leads to improvements on diverse image classification benchmarks aimed at evaluating robustness to distribution shifts.
Author Information
Yu Sun (UC Berkeley)
Xiaolong Wang (UC Berkeley)
Zhuang Liu (UC Berkeley)
John Miller (University of California, Berkeley)
Alexei Efros (UC Berkeley)
University of California Moritz Hardt (University of California, Berkeley)
More from the Same Authors
-
2020 Poster: Performative Prediction »
Juan Perdomo · Tijana Zrnic · Celestine Mendler-Dünner · University of California Moritz Hardt -
2020 Poster: Strategic Classification is Causal Modeling in Disguise »
John Miller · Smitha Milli · University of California Moritz Hardt -
2020 Poster: Balancing Competing Objectives with Noisy Data: Score-Based Classifiers for Welfare-Aware Machine Learning »
Esther Rolf · Max Simchowitz · Sarah Dean · Lydia T. Liu · Daniel Bjorkegren · University of California Moritz Hardt · Joshua Blumenstock -
2020 Poster: The Effect of Natural Distribution Shift on Question Answering Models »
John Miller · Karl Krauth · Benjamin Recht · Ludwig Schmidt -
2019 Poster: Natural Analysts in Adaptive Data Analysis »
Tijana Zrnic · University of California Moritz Hardt -
2019 Poster: The Implicit Fairness Criterion of Unconstrained Learning »
Lydia T. Liu · Max Simchowitz · University of California Moritz Hardt -
2019 Oral: The Implicit Fairness Criterion of Unconstrained Learning »
Lydia T. Liu · Max Simchowitz · University of California Moritz Hardt -
2019 Oral: Natural Analysts in Adaptive Data Analysis »
Tijana Zrnic · University of California Moritz Hardt -
2018 Poster: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Judy Hoffman · Eric Tzeng · Taesung Park · Jun-Yan Zhu · Philip Isola · Kate Saenko · Alexei Efros · Trevor Darrell -
2018 Oral: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Judy Hoffman · Eric Tzeng · Taesung Park · Jun-Yan Zhu · Philip Isola · Kate Saenko · Alexei Efros · Trevor Darrell -
2018 Poster: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2018 Poster: Delayed Impact of Fair Machine Learning »
Lydia T. Liu · Sarah Dean · Esther Rolf · Max Simchowitz · University of California Moritz Hardt -
2018 Oral: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2018 Oral: Delayed Impact of Fair Machine Learning »
Lydia T. Liu · Sarah Dean · Esther Rolf · Max Simchowitz · University of California Moritz Hardt -
2017 Poster: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell -
2017 Talk: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell