Timezone: »

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics
Mahsa Ghasemi · Erdem Bulgur · Ufuk Topcu

Tue Jul 14 09:00 AM -- 09:45 AM & Tue Jul 14 08:00 PM -- 08:45 PM (PDT) @ Virtual

We consider an agent that is assigned with a temporal logic task in an environment whose semantic representation is only partially known. We represent the semantics of the environment with a set of state properties, called \textit{atomic propositions} over which, the agent holds a probabilistic belief and updates it as new sensory measurements arrive. The goal is to design a policy for the agent that realizes the task with high probability. We develop a planning strategy that takes the semantic uncertainties into account and by doing so provides probabilistic guarantees on the task success. Furthermore, as new data arrive, the belief over the atomic propositions evolves and, subsequently, the planning strategy adapts accordingly. We evaluate the proposed method on various finite-horizon tasks in planar navigation settings where the empirical results show that the proposed method provides reliable task performance that also improves as the knowledge about the environment enhances.

Author Information

Mahsa Ghasemi (The University of Texas at Austin)
Erdem Bulgur (University of Texas at Austin)
Ufuk Topcu (University of Texas at Austin)

More from the Same Authors