Timezone: »
A general framework for online learning with partial information is one where feedback graphs specify which losses can be observed by the learner. We study a challenging scenario where feedback graphs vary stochastically with time and, more importantly, where graphs and losses are dependent. This scenario appears in several real-world applications that we describe where the outcome of actions are correlated. We devise a new algorithm for this setting that exploits the stochastic properties of the graphs and that benefits from favorable regret guarantees. We present a detailed theoretical analysis of this algorithm, and also report the result of a series of experiments on real-world datasets, which show that our algorithm outperforms standard baselines for online learning with feedback graphs.
Author Information
Corinna Cortes (Google Research)
Giulia DeSalvo (Google Research)
Claudio Gentile (Google Research)
Mehryar Mohri (Google Research and Courant Institute of Mathematical Sciences)
Ningshan Zhang (Hudson River Trading)
More from the Same Authors
-
2021 : Learning with User-Level Privacy »
Daniel A Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh -
2023 : Ranking with Abstention »
Anqi Mao · Mehryar Mohri · Yutao Zhong -
2023 Poster: $H$-Consistency Bounds for Pairwise Misranking Loss Surrogates »
Anqi Mao · Mehryar Mohri · Yutao Zhong -
2023 Poster: Reinforcement Learning Can Be More Efficient with Multiple Rewards »
Christoph Dann · Yishay Mansour · Mehryar Mohri -
2023 Poster: Cross-Entropy Loss Functions: Theoretical Analysis and Applications »
Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Poster: Achieving Minimax Rates in Pool-Based Batch Active Learning »
Claudio Gentile · Zhilei Wang · Tong Zhang -
2022 Poster: Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation »
Chris Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2022 Spotlight: Achieving Minimax Rates in Pool-Based Batch Active Learning »
Claudio Gentile · Zhilei Wang · Tong Zhang -
2022 Spotlight: Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation »
Chris Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2022 Poster: H-Consistency Bounds for Surrogate Loss Minimizers »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Oral: H-Consistency Bounds for Surrogate Loss Minimizers »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2021 Spotlight: A Discriminative Technique for Multiple-Source Adaptation »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang -
2021 Poster: Hierarchical Clustering of Data Streams: Scalable Algorithms and Approximation Guarantees »
Anand Rajagopalan · Fabio Vitale · Danny Vainstein · Gui Citovsky · Cecilia Procopiuc · Claudio Gentile -
2021 Poster: A Discriminative Technique for Multiple-Source Adaptation »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang -
2021 Spotlight: Hierarchical Clustering of Data Streams: Scalable Algorithms and Approximation Guarantees »
Anand Rajagopalan · Fabio Vitale · Danny Vainstein · Gui Citovsky · Cecilia Procopiuc · Claudio Gentile -
2021 Poster: Dynamic Balancing for Model Selection in Bandits and RL »
Ashok Cutkosky · Christoph Dann · Abhimanyu Das · Claudio Gentile · Aldo Pacchiano · Manish Purohit -
2021 Spotlight: Relative Deviation Margin Bounds »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh -
2021 Spotlight: Dynamic Balancing for Model Selection in Bandits and RL »
Ashok Cutkosky · Christoph Dann · Abhimanyu Das · Claudio Gentile · Aldo Pacchiano · Manish Purohit -
2021 Poster: Best Model Identification: A Rested Bandit Formulation »
Leonardo Cella · Massimiliano Pontil · Claudio Gentile -
2021 Poster: Relative Deviation Margin Bounds »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh -
2021 Spotlight: Best Model Identification: A Rested Bandit Formulation »
Leonardo Cella · Massimiliano Pontil · Claudio Gentile -
2020 Poster: Adaptive Region-Based Active Learning »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Ningshan Zhang -
2020 Poster: SCAFFOLD: Stochastic Controlled Averaging for Federated Learning »
Sai Praneeth Reddy Karimireddy · Satyen Kale · Mehryar Mohri · Sashank Jakkam Reddi · Sebastian Stich · Ananda Theertha Suresh -
2020 Poster: Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2020 Poster: FedBoost: A Communication-Efficient Algorithm for Federated Learning »
Jenny Hamer · Mehryar Mohri · Ananda Theertha Suresh -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Online Learning with Sleeping Experts and Feedback Graphs »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2019 Oral: Online Learning with Sleeping Experts and Feedback Graphs »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2019 Poster: Active Learning with Disagreement Graphs »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri · Ningshan Zhang · Claudio Gentile -
2019 Oral: Active Learning with Disagreement Graphs »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri · Ningshan Zhang · Claudio Gentile -
2018 Poster: Online Learning with Abstention »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2018 Oral: Online Learning with Abstention »
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Scott Yang -
2017 : Learning with Rejection »
Giulia DeSalvo -
2017 Workshop: Picky Learners: Choosing Alternative Ways to Process Data. »
Corinna Cortes · Kamalika Chaudhuri · Giulia DeSalvo · Ningshan Zhang · Chicheng Zhang -
2017 Poster: AdaNet: Adaptive Structural Learning of Artificial Neural Networks »
Corinna Cortes · Xavi Gonzalvo · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang -
2017 Talk: AdaNet: Adaptive Structural Learning of Artificial Neural Networks »
Corinna Cortes · Xavi Gonzalvo · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang