Timezone: »
Recent work has shown how predictive modeling can endow agents with rich knowledge of their surroundings, improving their ability to act in complex environments. We propose question-answering as a general paradigm to decode and understand the representations that such agents develop, applying our method to two recent approaches to predictive modelling - action-conditional CPC (Guo et al., 2018) and SimCore (Gregor et al., 2019). After training agents with these predictive objectives in a visually-rich, 3D environment with an assortment of objects, colors, shapes, and spatial configurations, we probe their internal state representations with a host of synthetic (English) questions, without backpropagating gradients from the question-answering decoder into the agent. The performance of different agents when probed in this way reveals that they learn to encode factual, and seemingly compositional, information about objects, properties and spatial relations from their physical environment. Our approach is intuitive, i.e. humans can easily interpret the responses of the model as opposed to inspecting continuous vectors, and model-agnostic, i.e. applicable to any modeling approach. By revealing the implicit knowledge of objects, quantities, properties and relations acquired by agents as they learn, question-conditional agent probing can stimulate the design and development of stronger predictive learning objectives.
Author Information
Abhishek Das (Facebook AI Research)
Federico Carnevale (Deepmind)
Hamza Merzic (DeepMind)
Laura Rimell
Rosalia Schneider (DeepMind)
Josh Abramson (DeepMind)
Alden Hung (DeepMind)
Arun Ahuja (DeepMind)
Stephen Clark (University of Cambridge/Deepmind)
Greg Wayne (DeepMind)
Feilx Hill (Deepmind)
More from the Same Authors
-
2023 Poster: The Edge of Orthogonality: A Simple View of What Makes BYOL Tick »
Pierre Richemond · Allison Tam · Yunhao Tang · Florian Strub · Bilal Piot · Feilx Hill -
2022 Poster: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Spotlight: Tell me why! Explanations support learning relational and causal structure »
Andrew Lampinen · Nicholas Roy · Ishita Dasgupta · Stephanie Chan · Allison Tam · James McClelland · Chen Yan · Adam Santoro · Neil Rabinowitz · Jane Wang · Feilx Hill -
2022 Poster: A data-driven approach for learning to control computers »
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap -
2022 Spotlight: A data-driven approach for learning to control computers »
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap -
2021 Oral: NeRF-VAE: A Geometry Aware 3D Scene Generative Model »
Adam Kosiorek · Heiko Strathmann · Daniel Zoran · Pol Moreno · Rosalia Schneider · Sona Mokra · Danilo J. Rezende -
2021 Poster: NeRF-VAE: A Geometry Aware 3D Scene Generative Model »
Adam Kosiorek · Heiko Strathmann · Daniel Zoran · Pol Moreno · Rosalia Schneider · Sona Mokra · Danilo J. Rezende -
2021 Poster: Imitation by Predicting Observations »
Drew Jaegle · Yury Sulsky · Arun Ahuja · Jake Bruce · Rob Fergus · Greg Wayne -
2021 Spotlight: Imitation by Predicting Observations »
Drew Jaegle · Yury Sulsky · Arun Ahuja · Jake Bruce · Rob Fergus · Greg Wayne -
2020 : Invited Talk: Felix Hill »
Feilx Hill -
2019 Poster: TarMAC: Targeted Multi-Agent Communication »
Abhishek Das · Theophile Gervet · Joshua Romoff · Dhruv Batra · Devi Parikh · Michael Rabbat · Joelle Pineau -
2019 Oral: TarMAC: Targeted Multi-Agent Communication »
Abhishek Das · Theophile Gervet · Joshua Romoff · Dhruv Batra · Devi Parikh · Michael Rabbat · Joelle Pineau -
2019 Poster: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2019 Oral: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2018 Poster: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Oral: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap