Timezone: »

 
Poster
Automatic Shortcut Removal for Self-Supervised Representation Learning
Matthias Minderer · Olivier Bachem · Neil Houlsby · Michael Tschannen

Tue Jul 14 10:00 AM -- 10:45 AM & Tue Jul 14 11:00 PM -- 11:45 PM (PDT) @

In self-supervised visual representation learning, a feature extractor is trained on a "pretext task" for which labels can be generated cheaply, without human annotation. A central challenge in this approach is that the feature extractor quickly learns to exploit low-level visual features such as color aberrations or watermarks and then fails to learn useful semantic representations. Much work has gone into identifying such "shortcut" features and hand-designing schemes to reduce their effect. Here, we propose a general framework for mitigating the effect shortcut features. Our key assumption is that those features which are the first to be exploited for solving the pretext task may also be the most vulnerable to an adversary trained to make the task harder. We show that this assumption holds across common pretext tasks and datasets by training a "lens" network to make small image changes that maximally reduce performance in the pretext task. Representations learned with the modified images outperform those learned without in all tested cases. Additionally, the modifications made by the lens reveal how the choice of pretext task and dataset affects the features learned by self-supervision.

Author Information

Matthias Minderer (Google Research)
Olivier Bachem (Google Brain)
Neil Houlsby (Google)
Michael Tschannen (Google Brain)

More from the Same Authors

  • 2021 : A functional mirror ascent view of policy gradient methods with function approximation »
    Sharan Vaswani · Olivier Bachem · Simone Totaro · Matthieu Geist · Marlos C. Machado · Pablo Samuel Castro · Nicolas Le Roux
  • 2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
    Frederik Träuble · Andrea Dittadi · Manuel Wuthrich · Felix Widmaier · Peter V Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer
  • 2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
    Frederik Träuble · Andrea Dittadi · Manuel Wüthrich · Felix Widmaier · Peter Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer
  • 2021 : Offline Reinforcement Learning as Anti-Exploration »
    Shideh Rezaeifar · Robert Dadashi · Nino Vieillard · Léonard Hussenot · Olivier Bachem · Olivier Pietquin · Matthieu Geist
  • 2022 : SI-Score »
    Jessica Yung · Rob Romijnders · Alexander Kolesnikov · Lucas Beyer · Josip Djolonga · Neil Houlsby · Sylvain Gelly · Mario Lucic · Xiaohua Zhai
  • 2023 Poster: Underspecification Presents Challenges for Credibility in Modern Machine Learning »
    Alexander D'Amour · Katherine Heller · Dan Moldovan · Ben Adlam · Babak Alipanahi · Alex Beutel · Christina Chen · Jonathan Deaton · Jacob Eisenstein · Matthew Hoffman · Farhad Hormozdiari · Neil Houlsby · Shaobo Hou · Ghassen Jerfel · Alan Karthikesalingam · Mario Lucic · Yian Ma · Cory McLean · Diana Mincu · Akinori Mitani · Andrea Montanari · Zachary Nado · Vivek Natarajan · Christopher Nielson · Thomas F. Osborne · Rajiv Raman · Kim Ramasamy · Rory sayres · Jessica Schrouff · Martin Seneviratne · Shannon Sequeira · Harini Suresh · Victor Veitch · Maksym Vladymyrov · Xuezhi Wang · Kellie Webster · Steve Yadlowsky · Taedong Yun · Xiaohua Zhai · D. Sculley
  • 2023 Poster: Adaptive Computation with Elastic Input Sequence »
    Fuzhao Xue · Valerii Likhosherstov · Anurag Arnab · Neil Houlsby · Mostafa Dehghani · Yang You
  • 2023 Poster: Scaling Vision Transformers to 22 Billion Parameters »
    Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby
  • 2023 Oral: Scaling Vision Transformers to 22 Billion Parameters »
    Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby
  • 2022 : SI-Score »
    Jessica Yung · Rob Romijnders · Alexander Kolesnikov · Lucas Beyer · Josip Djolonga · Neil Houlsby · Sylvain Gelly · Mario Lucic · Xiaohua Zhai
  • 2022 : Dynamic neural networks: Present and Future »
    Neil Houlsby
  • 2021 Poster: Hyperparameter Selection for Imitation Learning »
    Léonard Hussenot · Marcin Andrychowicz · Damien Vincent · Robert Dadashi · Anton Raichuk · Sabela Ramos · Nikola Momchev · Sertan Girgin · Raphael Marinier · Lukasz Stafiniak · Emmanuel Orsini · Olivier Bachem · Matthieu Geist · Olivier Pietquin
  • 2021 Oral: Hyperparameter Selection for Imitation Learning »
    Léonard Hussenot · Marcin Andrychowicz · Damien Vincent · Robert Dadashi · Anton Raichuk · Sabela Ramos · Nikola Momchev · Sertan Girgin · Raphael Marinier · Lukasz Stafiniak · Emmanuel Orsini · Olivier Bachem · Matthieu Geist · Olivier Pietquin
  • 2020 Poster: Weakly-Supervised Disentanglement Without Compromises »
    Francesco Locatello · Ben Poole · Gunnar Ratsch · Bernhard Schölkopf · Olivier Bachem · Michael Tschannen
  • 2019 : Poster Session 1 (all papers) »
    Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel
  • 2019 Poster: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
    Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem
  • 2019 Poster: High-Fidelity Image Generation With Fewer Labels »
    Mario Lucic · Michael Tschannen · Marvin Ritter · Xiaohua Zhai · Olivier Bachem · Sylvain Gelly
  • 2019 Oral: High-Fidelity Image Generation With Fewer Labels »
    Mario Lucic · Michael Tschannen · Marvin Ritter · Xiaohua Zhai · Olivier Bachem · Sylvain Gelly
  • 2019 Oral: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations »
    Francesco Locatello · Stefan Bauer · Mario Lucic · Gunnar Ratsch · Sylvain Gelly · Bernhard Schölkopf · Olivier Bachem
  • 2018 Poster: StrassenNets: Deep Learning with a Multiplication Budget »
    Michael Tschannen · Aran Khanna · Animashree Anandkumar
  • 2018 Poster: Born Again Neural Networks »
    Tommaso Furlanello · Zachary Lipton · Michael Tschannen · Laurent Itti · Anima Anandkumar
  • 2018 Oral: Born Again Neural Networks »
    Tommaso Furlanello · Zachary Lipton · Michael Tschannen · Laurent Itti · Anima Anandkumar
  • 2018 Oral: StrassenNets: Deep Learning with a Multiplication Budget »
    Michael Tschannen · Aran Khanna · Animashree Anandkumar