Timezone: »
Autoregressive models (ARMs) currently hold state-of-the-art performance in likelihood-based modeling of image and audio data. Generally, neural network based ARMs are designed to allow fast inference, but sampling from these models is impractically slow. In this paper, we introduce the predictive sampling algorithm: a procedure that exploits the fast inference property of ARMs in order to speed up sampling, while keeping the model intact. We propose two variations of predictive sampling, namely sampling with ARM fixed-point iteration and learned forecasting modules. Their effectiveness is demonstrated in two settings: i) explicit likelihood modeling on binary MNIST, SVHN and CIFAR10, and ii) discrete latent modeling in an autoencoder trained on SVHN, CIFAR10 and Imagenet32. Empirically, we show considerable improvements over baselines in number of ARM inference calls and sampling speed.
Author Information
Auke Wiggers (Qualcomm AI Research)
Emiel Hoogeboom (University of Amsterdam)
More from the Same Authors
-
2023 Poster: simple diffusion: End-to-end diffusion for high resolution images »
Emiel Hoogeboom · Jonathan Heek · Tim Salimans -
2022 Poster: Equivariant Diffusion for Molecule Generation in 3D »
Emiel Hoogeboom · Victor Garcia Satorras · Clément Vignac · Max Welling -
2022 Oral: Equivariant Diffusion for Molecule Generation in 3D »
Emiel Hoogeboom · Victor Garcia Satorras · Clément Vignac · Max Welling -
2021 Poster: E(n) Equivariant Graph Neural Networks »
Victor Garcia Satorras · Emiel Hoogeboom · Max Welling -
2021 Poster: Self Normalizing Flows »
T. Anderson Keller · Jorn Peters · Priyank Jaini · Emiel Hoogeboom · Patrick Forré · Max Welling -
2021 Spotlight: E(n) Equivariant Graph Neural Networks »
Victor Garcia Satorras · Emiel Hoogeboom · Max Welling -
2021 Spotlight: Self Normalizing Flows »
T. Anderson Keller · Jorn Peters · Priyank Jaini · Emiel Hoogeboom · Patrick Forré · Max Welling -
2019 Poster: Emerging Convolutions for Generative Normalizing Flows »
Emiel Hoogeboom · Rianne Van den Berg · Max Welling -
2019 Oral: Emerging Convolutions for Generative Normalizing Flows »
Emiel Hoogeboom · Rianne Van den Berg · Max Welling