Timezone: »
Evidence-based decision-making entails collecting (costly) observations about an underlying phenomenon of interest, and subsequently committing to an (informed) decision on the basis of accumulated evidence. In this setting, active sensing is the goal-oriented problem of efficiently selecting which acquisitions to make, and when and what decision to settle on. As its complement, inverse active sensing seeks to uncover an agent's preferences and strategy given their observable decision-making behavior. In this paper, we develop an expressive, unified framework for the general setting of evidence-based decision-making under endogenous, context-dependent time pressure---which requires negotiating (subjective) tradeoffs between accuracy, speediness, and cost of information. Using this language, we demonstrate how it enables modeling intuitive notions of surprise, suspense, and optimality in decision strategies (the forward problem). Finally, we illustrate how this formulation enables understanding decision-making behavior by quantifying preferences implicit in observed decision strategies (the inverse problem).
Author Information
Daniel Jarrett (University of Cambridge)
Mihaela van der Schaar (University of Cambridge and UCLA)
More from the Same Authors
-
2020 Poster: Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift »
Alexander Chan · Ahmed Alaa · Zhaozhi Qian · Mihaela van der Schaar -
2020 Poster: Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders »
Ioana Bica · Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Temporal Phenotyping using Deep Predictive Clustering of Disease Progression »
Changhee Lee · Mihaela van der Schaar -
2020 Poster: Learning for Dose Allocation in Adaptive Clinical Trials with Safety Constraints »
Cong Shen · Zhiyang Wang · Sofia Villar · Mihaela van der Schaar -
2020 Poster: Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2020 Tutorial: Machine Learning for Healthcare: Challenges, Methods, Frontiers »
Mihaela van der Schaar -
2019 Poster: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2019 Oral: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2018 Poster: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Oral: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Poster: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Oral: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2017 Poster: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa Ibrahim · Scott B Hu · Mihaela van der Schaar -
2017 Talk: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa Ibrahim · Scott B Hu · Mihaela van der Schaar