Timezone: »
Selective rationalization improves neural network interpretability by identifying a small subset of input features — the rationale — that best explains or supports the prediction. A typical rationalization criterion, i.e. maximum mutual information (MMI), finds the rationale that maximizes the prediction performance based only on the rationale. However, MMI can be problematic because it picks up spurious correlations between the input features and the output. Instead, we introduce a game-theoretic invariant rationalization criterion where the rationales are constrained to enable the same predictor to be optimal across different environments. We show both theoretically and empirically that the proposed rationales can rule out spurious correlations and generalize better to different test scenarios. The resulting explanations also align better with human judgments. Our implementations are publicly available at https://github.com/code-terminator/invariant_rationalization.
Author Information
Shiyu Chang (MIT-IBM Watson AI Lab)
Yang Zhang (MIT-IBM Watson AI Lab)
Mo Yu (IBM T. J. Watson)
Tommi Jaakkola (MIT)
More from the Same Authors
-
2023 : Optimizing protein fitness using Bi-level Gibbs sampling with Graph-based Smoothing »
Andrew Kirjner · Jason Yim · Raman Samusevich · Tommi Jaakkola · Regina Barzilay · Ila R. Fiete -
2023 : Optimizing protein fitness using Gibbs sampling with Graph-based Smoothing »
Andrew Kirjner · Jason Yim · Raman Samusevich · Tommi Jaakkola · Regina Barzilay · Ila R. Fiete -
2023 : Invited Talk by Tommi Jaakkola »
Tommi Jaakkola -
2023 Poster: PFGM++: Unlocking the Potential of Physics-Inspired Generative Models »
Yilun Xu · Ziming Liu · Yonglong Tian · Shangyuan Tong · Max Tegmark · Tommi Jaakkola -
2023 Poster: Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models »
Guanhua Zhang · Jiabao Ji · Yang Zhang · Mo Yu · Tommi Jaakkola · Shiyu Chang -
2023 Poster: Master-ASR: Achieving Multilingual Scalability and Low-Resource Adaptation in ASR with Modular Learning »
Zhongzhi Yu · Yang Zhang · Kaizhi Qian · Cheng Wan · Yonggan Fu · Yongan Zhang · Yingyan (Celine) Lin -
2023 Poster: PromptBoosting: Black-Box Text Classification with Ten Forward Passes »
Bairu Hou · Joe O'Connor · Jacob Andreas · Shiyu Chang · Yang Zhang -
2023 Poster: SE(3) diffusion model with application to protein backbone generation »
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Data-Efficient Double-Win Lottery Tickets from Robust Pre-training »
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Yang Zhang · Shiyu Chang · Zhangyang “Atlas” Wang -
2022 Poster: Antibody-Antigen Docking and Design via Hierarchical Structure Refinement »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2022 Poster: ContentVec: An Improved Self-Supervised Speech Representation by Disentangling Speakers »
Kaizhi Qian · Yang Zhang · Heting Gao · Junrui Ni · Cheng-I Lai · David Cox · Mark Hasegawa-Johnson · Shiyu Chang -
2022 Spotlight: Data-Efficient Double-Win Lottery Tickets from Robust Pre-training »
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Yang Zhang · Shiyu Chang · Zhangyang “Atlas” Wang -
2022 Spotlight: ContentVec: An Improved Self-Supervised Speech Representation by Disentangling Speakers »
Kaizhi Qian · Yang Zhang · Heting Gao · Junrui Ni · Cheng-I Lai · David Cox · Mark Hasegawa-Johnson · Shiyu Chang -
2022 Spotlight: Antibody-Antigen Docking and Design via Hierarchical Structure Refinement »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Conformal Prediction Sets with Limited False Positives »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2022 Poster: EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction »
Hannes Stärk · Octavian Ganea · Lagnajit Pattanaik · Regina Barzilay · Tommi Jaakkola -
2022 Spotlight: Conformal Prediction Sets with Limited False Positives »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2022 Spotlight: EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction »
Hannes Stärk · Octavian Ganea · Lagnajit Pattanaik · Regina Barzilay · Tommi Jaakkola -
2021 Poster: Global Prosody Style Transfer Without Text Transcriptions »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson -
2021 Oral: Global Prosody Style Transfer Without Text Transcriptions »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson -
2021 Poster: Few-Shot Conformal Prediction with Auxiliary Tasks »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2021 Spotlight: Few-Shot Conformal Prediction with Auxiliary Tasks »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Poster: Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators »
Yonggan Fu · Yongan Zhang · Yang Zhang · David Cox · Yingyan Lin -
2021 Spotlight: Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators »
Yonggan Fu · Yongan Zhang · Yang Zhang · David Cox · Yingyan Lin -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Poster: Learning Task Informed Abstractions »
Xiang Fu · Ge Yang · Pulkit Agrawal · Tommi Jaakkola -
2021 Spotlight: Learning Task Informed Abstractions »
Xiang Fu · Ge Yang · Pulkit Agrawal · Tommi Jaakkola -
2020 : Invited Talk: Tommi Jaakkola »
Tommi Jaakkola -
2020 Poster: Generalization and Representational Limits of Graph Neural Networks »
Vikas K Garg · Stefanie Jegelka · Tommi Jaakkola -
2020 Poster: Multi-Objective Molecule Generation using Interpretable Substructures »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Educating Text Autoencoders: Latent Representation Guidance via Denoising »
Tianxiao Shen · Jonas Mueller · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Proper Network Interpretability Helps Adversarial Robustness in Classification »
Akhilan Boopathy · Sijia Liu · Gaoyuan Zhang · Cynthia Liu · Pin-Yu Chen · Shiyu Chang · Luca Daniel -
2020 Poster: Predicting deliberative outcomes »
Vikas K Garg · Tommi Jaakkola -
2020 Poster: Hierarchical Generation of Molecular Graphs using Structural Motifs »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Unsupervised Speech Decomposition via Triple Information Bottleneck »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Mark Hasegawa-Johnson · David Cox -
2020 Poster: Improving Molecular Design by Stochastic Iterative Target Augmentation »
Kevin Yang · Wengong Jin · Kyle Swanson · Regina Barzilay · Tommi Jaakkola -
2019 Poster: AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Xuesong Yang · Mark Hasegawa-Johnson -
2019 Poster: Functional Transparency for Structured Data: a Game-Theoretic Approach »
Guang-He Lee · Wengong Jin · David Alvarez-Melis · Tommi Jaakkola -
2019 Poster: DAG-GNN: DAG Structure Learning with Graph Neural Networks »
Yue Yu · Jie Chen · Tian Gao · Mo Yu -
2019 Oral: DAG-GNN: DAG Structure Learning with Graph Neural Networks »
Yue Yu · Jie Chen · Tian Gao · Mo Yu -
2019 Oral: AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Xuesong Yang · Mark Hasegawa-Johnson -
2019 Oral: Functional Transparency for Structured Data: a Game-Theoretic Approach »
Guang-He Lee · Wengong Jin · David Alvarez-Melis · Tommi Jaakkola -
2018 Poster: Junction Tree Variational Autoencoder for Molecular Graph Generation »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2018 Oral: Junction Tree Variational Autoencoder for Molecular Graph Generation »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2017 Poster: Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture »
Mingmin Zhao · Shichao Yue · Dina Katabi · Tommi Jaakkola · Matt Bianchi -
2017 Talk: Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture »
Mingmin Zhao · Shichao Yue · Dina Katabi · Tommi Jaakkola · Matt Bianchi -
2017 Poster: Sequence to Better Sequence: Continuous Revision of Combinatorial Structures »
Jonas Mueller · David Gifford · Tommi Jaakkola -
2017 Talk: Sequence to Better Sequence: Continuous Revision of Combinatorial Structures »
Jonas Mueller · David Gifford · Tommi Jaakkola -
2017 Poster: Deriving Neural Architectures from Sequence and Graph Kernels »
Tao Lei · Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2017 Talk: Deriving Neural Architectures from Sequence and Graph Kernels »
Tao Lei · Wengong Jin · Regina Barzilay · Tommi Jaakkola