Timezone: »

Causal Effect Identifiability under Partial-Observability
Sanghack Lee · Elias Bareinboim

Wed Jul 15 05:00 AM -- 05:45 AM & Wed Jul 15 04:00 PM -- 04:45 PM (PDT) @ None #None

Causal effect identifiability is concerned with establishing the effect of intervening on a set of variables on another set of variables from observational or interventional distributions under causal assumptions that are usually encoded in the form of a causal graph. Most of the results of this literature implicitly assume that every variable modeled in the graph is measured in the available distributions. In practice, however, the data collections of the different studies considered do not measure the same variables, consistently. In this paper, we study the causal effect identifiability problem when the available distributions encompass different sets of variables, which we refer to as identification under partial-observability. We study a number of properties of the factors that comprise a causal effect under various levels of abstraction, and then characterize the relationship between them with respect to their status relative to the identification of a targeted intervention. We establish a sufficient graphical criterion for determining whether the effects are identifiable from partially-observed distributions. Finally, building on these graphical properties, we develop an algorithm that returns a formula for a causal effect in terms of the available distributions.

Author Information

Sanghack Lee (Columbia University)
Elias Bareinboim (Columbia)
Elias Bareinboim

Elias Bareinboim is an associate professor in the Department of Computer Science and the director of the Causal Artificial Intelligence (CausalAI) Laboratory at Columbia University. His research focuses on causal and counterfactual inference and their applications to artificial intelligence and machine learning as well as data-driven fields in the health and social sciences. His work was the first to propose a general solution to the problem of ``causal data-fusion,'' providing practical methods for combining datasets generated under different experimental conditions and plagued with various biases. In the last years, Bareinboim has been exploring the intersection of causal inference with decision-making (including reinforcement learning) and explainability (including fairness analysis). Before joining Columbia, he was an assistant professor at Purdue University and received his Ph.D. in Computer Science from the University of California, Los Angeles. Bareinboim was named one of ``AI's 10 to Watch'' by IEEE, and is a recipient of an NSF CAREER Award, the Dan David Prize Scholarship, the 2014 AAAI Outstanding Paper Award, and the 2019 UAI Best Paper Award.

More from the Same Authors