Timezone: »
Causal effect identifiability is concerned with establishing the effect of intervening on a set of variables on another set of variables from observational or interventional distributions under causal assumptions that are usually encoded in the form of a causal graph. Most of the results of this literature implicitly assume that every variable modeled in the graph is measured in the available distributions. In practice, however, the data collections of the different studies considered do not measure the same variables, consistently. In this paper, we study the causal effect identifiability problem when the available distributions encompass different sets of variables, which we refer to as identification under partial-observability. We study a number of properties of the factors that comprise a causal effect under various levels of abstraction, and then characterize the relationship between them with respect to their status relative to the identification of a targeted intervention. We establish a sufficient graphical criterion for determining whether the effects are identifiable from partially-observed distributions. Finally, building on these graphical properties, we develop an algorithm that returns a formula for a causal effect in terms of the available distributions.
Author Information
Sanghack Lee (Columbia University)
Elias Bareinboim (Columbia)

Elias Bareinboim is an associate professor in the Department of Computer Science and the director of the Causal Artificial Intelligence (CausalAI) Laboratory at Columbia University. His research focuses on causal and counterfactual inference and their applications to artificial intelligence and machine learning as well as data-driven fields in the health and social sciences. His work was the first to propose a general solution to the problem of "causal data-fusion," providing practical methods for combining datasets generated under different experimental conditions and plagued with various biases. In the last years, Bareinboim has been exploring the intersection of causal inference with decision-making (including reinforcement learning) and explainability (including fairness analysis). Before joining Columbia, he was an assistant professor at Purdue University and received his Ph.D. in Computer Science from the University of California, Los Angeles. Bareinboim was named one of ``AI's 10 to Watch'' by IEEE, and is a recipient of an NSF CAREER Award, the Dan David Prize Scholarship, the 2014 AAAI Outstanding Paper Award, and the 2019 UAI Best Paper Award.
More from the Same Authors
-
2023 : Transportable Representations for Out-of-distribution Generalization »
Amirkasra Jalaldoust · Elias Bareinboim -
2023 : Causal Dynamics Learning with Quantized Local Independence Discovery »
Inwoo Hwang · Yunhyeok Kwak · Suhyung Choi · Byoung-Tak Zhang · Sanghack Lee -
2023 Poster: Estimating Joint Treatment Effects by Combining Multiple Experiments »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2022 Poster: Counterfactual Transportability: A Formal Approach »
Juan Correa · Sanghack Lee · Elias Bareinboim -
2022 Spotlight: Counterfactual Transportability: A Formal Approach »
Juan Correa · Sanghack Lee · Elias Bareinboim -
2022 Poster: Partial Counterfactual Identification from Observational and Experimental Data »
Junzhe Zhang · Jin Tian · Elias Bareinboim -
2022 Poster: On Measuring Causal Contributions via do-interventions »
Yonghan Jung · Shiva Kasiviswanathan · Jin Tian · Dominik Janzing · Patrick Bloebaum · Elias Bareinboim -
2022 Spotlight: On Measuring Causal Contributions via do-interventions »
Yonghan Jung · Shiva Kasiviswanathan · Jin Tian · Dominik Janzing · Patrick Bloebaum · Elias Bareinboim -
2022 Spotlight: Partial Counterfactual Identification from Observational and Experimental Data »
Junzhe Zhang · Jin Tian · Elias Bareinboim -
2022 : Q & A (second) »
Drago Plecko · Elias Bareinboim -
2022 : Q & A (first) »
Drago Plecko · Elias Bareinboim -
2022 Tutorial: Causal Fairness Analysis »
Elias Bareinboim · Drago Plecko -
2022 : Foundations of Causal Fairness Analysis »
Elias Bareinboim -
2021 Poster: Estimating Identifiable Causal Effects on Markov Equivalence Class through Double Machine Learning »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2021 Spotlight: Estimating Identifiable Causal Effects on Markov Equivalence Class through Double Machine Learning »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2020 Poster: Efficient Identification in Linear Structural Causal Models with Auxiliary Cutsets »
Daniel Kumor · Carlos Cinelli · Elias Bareinboim -
2020 Tutorial: Causal Reinforcement Learning »
Elias Bareinboim -
2019 Poster: Causal Identification under Markov Equivalence: Completeness Results »
Amin Jaber · Jiji Zhang · Elias Bareinboim -
2019 Poster: Sensitivity Analysis of Linear Structural Causal Models »
Carlos Cinelli · Daniel Kumor · Bryant Chen · Judea Pearl · Elias Bareinboim -
2019 Poster: Adjustment Criteria for Generalizing Experimental Findings »
Juan Correa · Jin Tian · Elias Bareinboim -
2019 Oral: Sensitivity Analysis of Linear Structural Causal Models »
Carlos Cinelli · Daniel Kumor · Bryant Chen · Judea Pearl · Elias Bareinboim -
2019 Oral: Adjustment Criteria for Generalizing Experimental Findings »
Juan Correa · Jin Tian · Elias Bareinboim -
2019 Oral: Causal Identification under Markov Equivalence: Completeness Results »
Amin Jaber · Jiji Zhang · Elias Bareinboim -
2018 Poster: Budgeted Experiment Design for Causal Structure Learning »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Elias Bareinboim -
2018 Oral: Budgeted Experiment Design for Causal Structure Learning »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Elias Bareinboim -
2017 Poster: Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables »
Bryant Chen · Daniel Kumor · Elias Bareinboim -
2017 Poster: Counterfactual Data-Fusion for Online Reinforcement Learners »
Andrew Forney · Judea Pearl · Elias Bareinboim -
2017 Talk: Counterfactual Data-Fusion for Online Reinforcement Learners »
Andrew Forney · Judea Pearl · Elias Bareinboim -
2017 Talk: Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables »
Bryant Chen · Daniel Kumor · Elias Bareinboim