Timezone: »
Can the parameters of a hidden Markov model (HMM) be estimated from a single sweep through the observations -- and additionally, without being trapped at a local optimum in the likelihood surface? That is the premise of recent method of moments algorithms devised for HMMs. In these, correlations between consecutive pair- or triplet-wise observations are empirically estimated and used to compute estimates of the HMM parameters. Albeit computationally very attractive, the main drawback is that by restricting to only low-order correlations in the data, information is being neglected which results in a loss of accuracy (compared to standard maximum likelihood schemes). In this paper, we propose extending these methods (both pair- and triplet-based) by also including non-consecutive correlations in a way which does not significantly increase the computational cost (which scales linearly with the number of additional lags included). We prove strong consistency of the new methods, and demonstrate an improved performance in numerical experiments on both synthetic and real-world financial time-series datasets.
Author Information
Robert Mattila (KTH Royal Institute of Technology)
Cristian R. Rojas (KTH Royal Institute of Technology)
Eric Moulines (Ecole Polytechnique)
Vikram Krishnamurthy (Cornell University)
Bo Wahlberg (KTH Royal Institute of Technology)
More from the Same Authors
-
2021 : Model-Free Approach to Evaluate Reinforcement Learning Algorithms »
Denis Belomestny · Ilya Levin · Eric Moulines · Alexey Naumov · Sergey Samsonov · Veronika Zorina -
2023 : Balanced Training of Energy-Based Models with Adaptive Flow Sampling »
Louis Grenioux · Eric Moulines · Marylou GabriĆ© -
2023 Poster: Conformal Prediction for Federated Uncertainty Quantification Under Label Shift »
Vincent Plassier · Mehdi Makni · Aleksandr Rubashevskii · Eric Moulines · Maxim Panov -
2023 Poster: Fast Rates for Maximum Entropy Exploration »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Yunhao Tang · Michal Valko · Pierre Menard -
2023 Poster: On Sampling with Approximate Transport Maps »
Louis Grenioux · Alain Oliviero Durmus · Eric Moulines · Marylou GabriĆ© -
2023 Oral: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: DRCFS: Doubly Robust Causal Feature Selection »
Francesco Quinzan · Ashkan Soleymani · Patrick Jaillet · Cristian R. Rojas · Stefan Bauer -
2023 Poster: State and parameter learning with PARIS particle Gibbs »
Gabriel Cardoso · Yazid Janati el idrissi · Sylvain Le Corff · Eric Moulines · Jimmy Olsson -
2022 Poster: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Oral: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Poster: Diffusion bridges vector quantized variational autoencoders »
Max Cohen · Guillaume QUISPE · Sylvain Le Corff · Charles Ollion · Eric Moulines -
2022 Spotlight: Diffusion bridges vector quantized variational autoencoders »
Max Cohen · Guillaume QUISPE · Sylvain Le Corff · Charles Ollion · Eric Moulines -
2021 Poster: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Spotlight: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Poster: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs »
Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Oral: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs »
Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Poster: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Spotlight: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2018 Poster: Bayesian Model Selection for Change Point Detection and Clustering »
othmane mazhar · Cristian R. Rojas · Inst. of Technology Carlo Fischione · Mohammad Reza Hesamzadeh -
2018 Oral: Bayesian Model Selection for Change Point Detection and Clustering »
othmane mazhar · Cristian R. Rojas · Inst. of Technology Carlo Fischione · Mohammad Reza Hesamzadeh