Timezone: »
During the past five years the Bayesian deep learning community has developed increasingly accurate and efficient approximate inference procedures that allow for Bayesian inference in deep neural networks. However, despite this algorithmic progress and the promise of improved uncertainty quantification and sample efficiency there are---as of early 2020---no publicized deployments of Bayesian neural networks in industrial practice. In this work we cast doubt on the current understanding of Bayes posteriors in popular deep neural networks: we demonstrate through careful MCMC sampling that the posterior predictive induced by the Bayes posterior yields systematically worse predictions when compared to simpler methods including point estimates obtained from SGD. Furthermore, we demonstrate that predictive performance is improved significantly through the use of a ``cold posterior'' that overcounts evidence. Such cold posteriors sharply deviate from the Bayesian paradigm but are commonly used as heuristic in Bayesian deep learning papers. We put forward several hypotheses that could explain cold posteriors and evaluate the hypotheses through experiments. Our work questions the goal of accurate posterior approximations in Bayesian deep learning: If the true Bayes posterior is poor, what is the use of more accurate approximations? Instead, we argue that it is timely to focus on understanding the origin of cold posteriors.
Author Information
Florian Wenzel (Google Research)
Kevin Roth (ETH Zurich)
Bastiaan Veeling (University of Amsterdam)
Jakub Swiatkowski (University of Warsaw)
Linh Tran (Imperial College London)
Stephan Mandt (University of California, Irivine)
Stephan Mandt is an Assistant Professor of Computer Science at the University of California, Irvine. From 2016 until 2018, he was a Senior Researcher and head of the statistical machine learning group at Disney Research, first in Pittsburgh and later in Los Angeles. He held previous postdoctoral positions at Columbia University and at Princeton University. Stephan holds a PhD in Theoretical Physics from the University of Cologne. He is a Fellow of the German National Merit Foundation, a Kavli Fellow of the U.S. National Academy of Sciences, and was a visiting researcher at Google Brain. Stephan serves regularly as an Area Chair for NeurIPS, ICML, AAAI, and ICLR, and is a member of the Editorial Board of JMLR. His research is currently supported by NSF, DARPA, IBM, and Qualcomm.
Jasper Snoek (Google Brain)
Tim Salimans (Google)
Rodolphe Jenatton (Google Research)
Sebastian Nowozin (Microsoft Research)
More from the Same Authors
-
2021 : A Primer on Multi-Neuron Relaxation-based Adversarial Robustness Certification »
Kevin Roth -
2021 : A simple fix to Mahalanobis distance for improving near-OOD detection »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Wide Mean-Field Variational Bayesian Neural Networks Ignore the Data »
Stanislav Fort · Jasper Snoek -
2021 : Precise characterization of the prior predictive distribution of deep ReLU networks »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Exploring the Limits of Out-of-Distribution Detection »
Jasper Snoek -
2021 : Repulsive Deep Ensembles are Bayesian »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Calibrated Out-of-Distribution Detection with Conformal P-values »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Are Bayesian neural networks intrinsically good at out-of-distribution detection? »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Provably Robust Detection of Out-of-distribution Data (almost) for free »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Out-of-Distribution Dynamics Detection: RL-Relevant Benchmarks and Results »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Rethinking Assumptions in Deep Anomaly Detection »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Multiple Moment Matching Inference: A Flexible Approximate Inference Algorithm »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : PAC Prediction Sets Under Covariate Shift »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Correct-N-Contrast: a Contrastive Approach for Improving Robustness to Spurious Correlations »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Do We Really Need to Learn Representations from In-domain Data for Outlier Detection? »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : DATE: Detecting Anomalies in Text via Self-Supervision of Transformers »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Implicit Ensemble Training for Efficient and Robust Multiagent Reinforcement Learning »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Failures of Uncertainty Estimation on Out-Of-Distribution Samples: Experimental Results from Medical Applications Lead to Theoretical Insights »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : On Out-of-distribution Detection with Energy-Based Models »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Deterministic Neural Networks with Inductive Biases Capture Epistemic and Aleatoric Uncertainty »
Andreas Kirsch · Balaji Lakshminarayanan · Jasper Snoek -
2021 : Transfer and Marginalize: Explaining Away Label Noise with Privileged Information »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Meta-Calibration: Meta-Learning of Model Calibration Using Differentiable Expected Calibration Error »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Inferring Black Hole Properties from Astronomical Multivariate Time Series with Bayesian Attentive Neural Processes »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Towards improving robustness of compressed CNNs »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : SAND-mask: An Enhanced Gradient Masking Strategy for Invariant Prediction in Domain Generalization »
Soroosh Shahtalebi · Jasper Snoek · Balaji Lakshminarayanan -
2021 : Efficient Gaussian Neural Processes for Regression »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Simple, Attack-Agnostic Defense Against Targeted Training Set Attacks Using Cosine Similarity »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Safety & Exploration: A Comparative Study of Uses of Uncertainty in Reinforcement Learning »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Rethinking Function-Space Variational Inference in Bayesian Neural Networks »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Understanding the Under-Coverage Bias in Uncertainty Estimation »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Mean Embeddings with Test-Time Data Augmentation for Ensembling of Representations »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Deep Ensemble Uncertainty Fails as Network Width Increases: Why, and How to Fix It »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Exact and Efficient Adversarial Robustness with Decomposable Neural Networks »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Consistency Regularization for Training Confidence-Calibrated Classifiers »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Quantization of Bayesian neural networks and its effect on quality of uncertainty »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Class-Distribution-Aware Calibration for Long-Tailed Visual Recognition »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Bayesian Neural Networks with Soft Evidence »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Anomaly Detection for Event Data with Temporal Point Processes »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Batch Inverse-Variance Weighting: Deep Heteroscedastic Regression »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : An Empirical Study of Invariant Risk Minimization on Deep Models »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : A Bayesian Approach to Invariant Deep Neural Networks »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Practical posterior Laplace approximation with optimization-driven second moment estimation »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Variational Generative Flows for Reconstruction Uncertainty Estimation »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Improving the Accuracy-Robustness Trade-Off for Dual-Domain Adversarial Training »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Consistency Regularization Can Improve Robustness to Label Noise »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Neural Variational Gradient Descent »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Evaluating the Use of Reconstruction Error for Novelty Localization »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : The Hidden Uncertainty in a Neural Network’s Activations »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : On the Calibration of Deterministic Epistemic Uncertainty »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Objective Robustness in Deep Reinforcement Learning »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Epistemic Uncertainty in Learning Chaotic Dynamical Systems »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Towards Stochastic Neural Networks via Inductive Wasserstein Embeddings »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Distribution-free uncertainty quantification for classification under label shift »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : How does a Neural Network's Architecture Impact its Robustness to Noisy Labels? »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Top-label calibration »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Learning to Align the Support of Distributions »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Beyond First-Order Uncertainty Estimation with Evidential Models for Open-World Recognition »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Revisiting Out-of-Distribution Detection: A Simple Baseline is Surprisingly Effective »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Contrastive Predictive Coding for Anomaly Detection and Segmentation »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Multi-headed Neural Ensemble Search »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : A variational approximate posterior for the deep Wishart process »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : What Are Effective Labels for Augmented Data? Improving Calibration and Robustness with AutoLabel »
Yao Qin · Jasper Snoek · Balaji Lakshminarayanan -
2021 : On Stein Variational Neural Network Ensembles »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : RouBL: A computationally cheap way to go beyond mean-field variational inference »
Sahar Karimi · Balaji Lakshminarayanan · Jasper Snoek -
2021 : No True State-of-the-Art? OOD Detection Methods are Inconsistent across Datasets »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Out-of-Distribution Generalization with Deep Equilibrium Models »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Mixture Proportion Estimation and PU Learning: A Modern Approach »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : On The Dark Side Of Calibration For Modern Neural Networks »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Domain Adaptation with Factorizable Joint Shift »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Scaling Laws for the Out-of-Distribution Generalization of Image Classifiers »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Learning Invariant Weights in Neural Networks »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Relational Deep Reinforcement Learning and Latent Goals for Following Instructions in Temporal Logic »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : On the Effectiveness of Mode Exploration in Bayesian Model Averaging for Neural Networks »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Detecting OODs as datapoints with High Uncertainty »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Multi-task Transformation Learning for Robust Out-of-Distribution Detection »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Directly Training Joint Energy-Based Models for Conditional Synthesis and Calibrated Prediction of Multi-Attribute Data »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Deep Learning with Quantified Uncertainty for Free Electron Laser Scientific Facilities »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : On the reversed bias-variance tradeoff in deep ensembles »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Robust Generalization of Quadratic Neural Networks via Function Identification »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Exploring Corruption Robustness: Inductive Biases in Vision Transformers and MLP-Mixers »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Deep Random Projection Outlyingness for Unsupervised Anomaly Detection »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Deep Deterministic Uncertainty for Semantic Segmentation »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Identifying Invariant and Sparse Predictors in High-dimensional Data »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : On Misclassification-Aware Smoothing for Robustness and Uncertainty Calibration »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : On Pitfalls in OoD Detection: Entropy Considered Harmful »
Andreas Kirsch · Jasper Snoek · Balaji Lakshminarayanan -
2021 : PnPOOD : Out-Of-Distribution Detection for Text Classification via Plug andPlay Data Augmentation »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Augmented Invariant Regularization »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Model-Based Robust Deep Learning: Generalizing to Natural, Out-of-Distribution Data »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Improved Adversarial Robustness via Uncertainty Targeted Attacks »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Notes on the Behavior of MC Dropout »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Distribution-free Risk-controlling Prediction Sets »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Stochastic Bouncy Particle Sampler for Bayesian Neural Networks »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Novelty detection using ensembles with regularized disagreement »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : A Tale Of Two Long Tails »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Defending against Adversarial Patches with Robust Self-Attention »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Intrinsic uncertainties and where to find them »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Dataset to Dataspace: A Topological-Framework to Improve Analysis of Machine Learning Model Performance »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Analyzing And Improving Neural Networks By Generating Semantic Counterexamples Through Differentiable Rendering »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Thinkback: Task-Specific Out-of-Distribution Detection »
Jasper Snoek · Balaji Lakshminarayanan -
2021 : Relating Adversarially Robust Generalization to Flat Minima »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : Deep Quantile Aggregation »
Balaji Lakshminarayanan · Jasper Snoek -
2021 : What Are Effective Labels for Augmented Data? Improving Calibration and Robustness with AutoLabel »
Yao Qin · Jasper Snoek -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2023 Poster: Scaling Vision Transformers to 22 Billion Parameters »
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby -
2023 Poster: Deep Anomaly Detection under Labeling Budget Constraints »
Aodong Li · Chen Qiu · Padhraic Smyth · Marius Kloft · Stephan Mandt · Maja Rudolph -
2023 Poster: When does Privileged information Explain Away Label Noise? »
Guillermo Ortiz Jimenez · Mark Collier · Anant Nawalgaria · Alexander D'Amour · Jesse Berent · Rodolphe Jenatton · Efi Kokiopoulou -
2023 Poster: simple diffusion: End-to-end diffusion for high resolution images »
Emiel Hoogeboom · Jonathan Heek · Tim Salimans -
2023 Poster: Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes »
Ba-Hien Tran · Babak Shahbaba · Stephan Mandt · Maurizio Filippone -
2023 Oral: Scaling Vision Transformers to 22 Billion Parameters »
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby -
2023 Workshop: Neural Compression: From Information Theory to Applications »
Berivan Isik · Yibo Yang · Daniel Severo · Karen Ullrich · Robert Bamler · Stephan Mandt -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 Poster: Structured Stochastic Gradient MCMC »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 Spotlight: Structured Stochastic Gradient MCMC »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 Poster: Transfer and Marginalize: Explaining Away Label Noise with Privileged Information »
Mark Collier · Rodolphe Jenatton · Efi Kokiopoulou · Jesse Berent -
2022 Poster: Latent Outlier Exposure for Anomaly Detection with Contaminated Data »
Chen Qiu · Aodong Li · Marius Kloft · Maja Rudolph · Stephan Mandt -
2022 Spotlight: Latent Outlier Exposure for Anomaly Detection with Contaminated Data »
Chen Qiu · Aodong Li · Marius Kloft · Maja Rudolph · Stephan Mandt -
2022 Spotlight: Transfer and Marginalize: Explaining Away Label Noise with Privileged Information »
Mark Collier · Rodolphe Jenatton · Efi Kokiopoulou · Jesse Berent -
2021 Workshop: Uncertainty and Robustness in Deep Learning »
Balaji Lakshminarayanan · Dan Hendrycks · Yixuan Li · Jasper Snoek · Silvia Chiappa · Sebastian Nowozin · Thomas Dietterich -
2021 Poster: Neural Transformation Learning for Deep Anomaly Detection Beyond Images »
Chen Qiu · Timo Pfrommer · Marius Kloft · Stephan Mandt · Maja Rudolph -
2021 Spotlight: Neural Transformation Learning for Deep Anomaly Detection Beyond Images »
Chen Qiu · Timo Pfrommer · Marius Kloft · Stephan Mandt · Maja Rudolph -
2021 Poster: Active Deep Probabilistic Subsampling »
Hans van Gorp · Iris Huijben · Bastiaan Veeling · Nicola Pezzotti · Ruud J. G. van Sloun -
2021 Spotlight: Active Deep Probabilistic Subsampling »
Hans van Gorp · Iris Huijben · Bastiaan Veeling · Nicola Pezzotti · Ruud J. G. van Sloun -
2020 Workshop: Uncertainty and Robustness in Deep Learning Workshop (UDL) »
Sharon Yixuan Li · Balaji Lakshminarayanan · Dan Hendrycks · Thomas Dietterich · Jasper Snoek -
2020 Poster: The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks »
Jakub Swiatkowski · Kevin Roth · Bastiaan Veeling · Linh Tran · Joshua V Dillon · Jasper Snoek · Stephan Mandt · Tim Salimans · Rodolphe Jenatton · Sebastian Nowozin -
2020 Poster: Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors »
Mike Dusenberry · Ghassen Jerfel · Yeming Wen · Yian Ma · Jasper Snoek · Katherine Heller · Balaji Lakshminarayanan · Dustin Tran -
2020 Poster: TaskNorm: Rethinking Batch Normalization for Meta-Learning »
John Bronskill · Jonathan Gordon · James Requeima · Sebastian Nowozin · Richard E Turner -
2020 Poster: Variational Bayesian Quantization »
Yibo Yang · Robert Bamler · Stephan Mandt -
2019 Poster: EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE »
Chao Ma · Sebastian Tschiatschek · Konstantina Palla · Jose Miguel Hernandez-Lobato · Sebastian Nowozin · Cheng Zhang -
2019 Poster: The Odds are Odd: A Statistical Test for Detecting Adversarial Examples »
Kevin Roth · Yannic Kilcher · Thomas Hofmann -
2019 Oral: EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE »
Chao Ma · Sebastian Tschiatschek · Konstantina Palla · Jose Miguel Hernandez-Lobato · Sebastian Nowozin · Cheng Zhang -
2019 Oral: The Odds are Odd: A Statistical Test for Detecting Adversarial Examples »
Kevin Roth · Yannic Kilcher · Thomas Hofmann -
2018 Poster: Iterative Amortized Inference »
Joe Marino · Yisong Yue · Stephan Mandt -
2018 Poster: Disentangled Sequential Autoencoder »
Yingzhen Li · Stephan Mandt -
2018 Oral: Disentangled Sequential Autoencoder »
Yingzhen Li · Stephan Mandt -
2018 Oral: Iterative Amortized Inference »
Joe Marino · Yisong Yue · Stephan Mandt -
2018 Poster: Which Training Methods for GANs do actually Converge? »
Lars Mescheder · Andreas Geiger · Sebastian Nowozin -
2018 Poster: Quasi-Monte Carlo Variational Inference »
Alexander Buchholz · Florian Wenzel · Stephan Mandt -
2018 Poster: Improving Optimization in Models With Continuous Symmetry Breaking »
Robert Bamler · Stephan Mandt -
2018 Oral: Quasi-Monte Carlo Variational Inference »
Alexander Buchholz · Florian Wenzel · Stephan Mandt -
2018 Oral: Which Training Methods for GANs do actually Converge? »
Lars Mescheder · Andreas Geiger · Sebastian Nowozin -
2018 Oral: Improving Optimization in Models With Continuous Symmetry Breaking »
Robert Bamler · Stephan Mandt -
2017 Poster: Dynamic Word Embeddings »
Robert Bamler · Stephan Mandt -
2017 Talk: Dynamic Word Embeddings »
Robert Bamler · Stephan Mandt -
2017 Poster: Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger -
2017 Talk: Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks »
Lars Mescheder · Sebastian Nowozin · Andreas Geiger