Timezone: »
Learning graph generative models is a challenging task for deep learning and has wide applicability to a range of domains like chemistry, biology and social science. However current deep neural methods suffer from limited scalability: for a graph with n nodes and m edges, existing deep neural methods require Omega(n^2) complexity by building up the adjacency matrix. On the other hand, many real world graphs are actually sparse in the sense that m << n^2. Based on this, we develop a novel autoregressive model, named BiGG, that utilizes this sparsity to avoid generating the full adjacency matrix, and importantly reduces the graph generation time complexity to O((n + m) log n). Furthermore, during training this autoregressive model can be parallelized with O(log n) synchronization stages, which makes it much more efficient than other autoregressive models that require Omega(n). Experiments on several benchmarks show that the proposed approach not only scales to orders of magnitude larger graphs than previously possible with deep autoregressive graph generative models, but also yields better graph generation quality.
Author Information
Hanjun Dai (Google Brain)
Azade Nova (Google Brain)
Yujia Li (DeepMind)
Bo Dai (Google Brain)
Dale Schuurmans (Google / University of Alberta)
More from the Same Authors
-
2022 : SAFER: Data-Efficient and Safe Reinforcement Learning via Skill Acquisition »
Dylan Slack · Yinlam Chow · Bo Dai · Nevan Wichers -
2023 : DISCS: A Benchmark for Discrete Sampling »
Katayoon Goshvadi · Haoran Sun · Xingchao Liu · Azade Nova · Ruqi Zhang · Will Grathwohl · Dale Schuurmans · Hanjun Dai -
2023 Workshop: Sampling and Optimization in Discrete Space »
Haoran Sun · Hanjun Dai · Priyank Jaini · Ruqi Zhang · Ellen Vitercik -
2023 Poster: Stochastic Gradient Succeeds for Bandits »
Jincheng Mei · Zixin Zhong · Bo Dai · Alekh Agarwal · Csaba Szepesvari · Dale Schuurmans -
2023 Poster: Revisiting Sampling for Combinatorial Optimization »
Haoran Sun · Katayoon Goshvadi · Azade Nova · Dale Schuurmans · Hanjun Dai -
2023 Poster: Gradient-Free Structured Pruning with Unlabeled Data »
Azade Nova · Hanjun Dai · Dale Schuurmans -
2023 Poster: Transformers Meet Directed Graphs »
Simon Markus Geisler · Yujia Li · Daniel Mankowitz · Taylan Cemgil · Stephan Günnemann · Cosmin Paduraru -
2022 Poster: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2022 Poster: Making Linear MDPs Practical via Contrastive Representation Learning »
Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai -
2022 Poster: A Parametric Class of Approximate Gradient Updates for Policy Optimization »
Ramki Gummadi · Saurabh Kumar · Junfeng Wen · Dale Schuurmans -
2022 Spotlight: A Parametric Class of Approximate Gradient Updates for Policy Optimization »
Ramki Gummadi · Saurabh Kumar · Junfeng Wen · Dale Schuurmans -
2022 Spotlight: Making Linear MDPs Practical via Contrastive Representation Learning »
Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai -
2022 Spotlight: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2022 Poster: Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization »
Hanjun Dai · Mengjiao Yang · Yuan Xue · Dale Schuurmans · Bo Dai -
2022 Spotlight: Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization »
Hanjun Dai · Mengjiao Yang · Yuan Xue · Dale Schuurmans · Bo Dai -
2021 : Invited Speaker: Bo Dai: Leveraging Non-uniformity in Policy Gradient »
Bo Dai -
2021 Poster: Overcoming Catastrophic Forgetting by Bayesian Generative Regularization »
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai -
2021 Spotlight: Overcoming Catastrophic Forgetting by Bayesian Generative Regularization »
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai -
2021 Poster: SpreadsheetCoder: Formula Prediction from Semi-structured Context »
Xinyun Chen · Petros Maniatis · Rishabh Singh · Charles Sutton · Hanjun Dai · Max Lin · Denny Zhou -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Poster: Leveraging Non-uniformity in First-order Non-convex Optimization »
Jincheng Mei · Yue Gao · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: SpreadsheetCoder: Formula Prediction from Semi-structured Context »
Xinyun Chen · Petros Maniatis · Rishabh Singh · Charles Sutton · Hanjun Dai · Max Lin · Denny Zhou -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: Leveraging Non-uniformity in First-order Non-convex Optimization »
Jincheng Mei · Yue Gao · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2021 Poster: EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL »
Seyed Kamyar Seyed Ghasemipour · Dale Schuurmans · Shixiang Gu -
2021 Poster: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL »
Seyed Kamyar Seyed Ghasemipour · Dale Schuurmans · Shixiang Gu -
2021 Spotlight: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 Poster: Energy-Based Processes for Exchangeable Data »
Mengjiao Yang · Bo Dai · Hanjun Dai · Dale Schuurmans -
2020 Poster: ConQUR: Mitigating Delusional Bias in Deep Q-Learning »
DiJia Su · Jayden Ooi · Tyler Lu · Dale Schuurmans · Craig Boutilier -
2020 Poster: Go Wide, Then Narrow: Efficient Training of Deep Thin Networks »
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans -
2020 Poster: Batch Stationary Distribution Estimation »
Junfeng Wen · Bo Dai · Lihong Li · Dale Schuurmans -
2020 Poster: Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search »
Binghong Chen · Chengtao Li · Hanjun Dai · Le Song -
2020 Poster: An Optimistic Perspective on Offline Deep Reinforcement Learning »
Rishabh Agarwal · Dale Schuurmans · Mohammad Norouzi -
2020 Poster: Learning To Stop While Learning To Predict »
Xinshi Chen · Hanjun Dai · Yu Li · Xin Gao · Le Song -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 Poster: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Oral: Learning to Generalize from Sparse and Underspecified Rewards »
Rishabh Agarwal · Chen Liang · Dale Schuurmans · Mohammad Norouzi -
2019 Poster: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Poster: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Oral: Understanding the Impact of Entropy on Policy Optimization »
Zafarali Ahmed · Nicolas Le Roux · Mohammad Norouzi · Dale Schuurmans -
2019 Oral: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Poster: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Poster: The Value Function Polytope in Reinforcement Learning »
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans -
2019 Oral: The Value Function Polytope in Reinforcement Learning »
Robert Dadashi · Marc Bellemare · Adrien Ali Taiga · Nicolas Le Roux · Dale Schuurmans -
2019 Oral: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2018 Poster: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Poster: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Oral: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Oral: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2017 Poster: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Talk: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Poster: Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Ahmad Humayun · Charlene Tay · Chen Yu · Linda Smith · James Rehg · Le Song -
2017 Talk: Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Ahmad Humayun · Charlene Tay · Chen Yu · Linda Smith · James Rehg · Le Song