Timezone: »
Sample selection approaches are popular in robust learning from noisy labels. However, how to properly control the selection process so that deep networks can benefit from the memorization effect is a hard problem. In this paper, motivated by the success of automated machine learning (AutoML), we model this issue as a function approximation problem. Specifically, we design a domain-specific search space based on general patterns of the memorization effect and propose a novel Newton algorithm to solve the bi-level optimization problem efficiently. We further provide a theoretical analysis of the algorithm, which ensures a good approximation to critical points. Experiments are performed on both benchmark and real-world data sets. Results demonstrate that the proposed method is much better than the state-of-the-art noisy-label-learning approaches, and also much more efficient than existing AutoML algorithms.
Author Information
QUANMING YAO (4Paradigm)
Dr. Quanming Yao is currently a leading researcher in 4Paradigm and managing the company's research group. He obtained his Ph.D. degree at the Department of Computer Science and Engineering at Hong Kong University of Science and Technology (HKUST) in 2018 and received his bachelor degree at HuaZhong University of Science and Technology (HUST) in 2013. He is Qiming Star (HUST, 2012), Tse Cheuk Ng Tai Research Excellence Prize (CSE, HKUST, 2014-2015), Google Fellowship (machine learning, 2016) and Ph.D. Research Excellence Award (School of Engineering, HKUST, 2018-2019). He has 23 top-tier journal and conference papers, including ICML, NeurIPS, JMLR, TPAMI, KDD, ICDE, CVPR, IJCAI, and AAAI; he was an outstanding reviewer of Neurocomputing in 2017; served as program committee of many prestigious conferences, including ICML, NeurIPS, CVPR, AAAI, and IJCAI; one of the committees of AutoML competition in NeurIPS-2018, IJCNN-2019 and IJCAI-2019.
Hansi Yang (Tsinghua)
Bo Han (HKBU / RIKEN)
Gang Niu (RIKEN)

Gang Niu is currently an indefinite-term research scientist at RIKEN Center for Advanced Intelligence Project.
James Kwok (Hong Kong University of Science and Technology)
More from the Same Authors
-
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Subspace Learning for Effective Meta-Learning »
Weisen JIANG · James Kwok · Yu Zhang -
2022 Spotlight: Subspace Learning for Effective Meta-Learning »
Weisen JIANG · James Kwok · Yu Zhang -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Poster: Fast and Provable Nonconvex Tensor RPCA »
Haiquan Qiu · Yao Wang · Shaojie Tang · Deyu Meng · QUANMING YAO -
2022 Poster: Efficient Variance Reduction for Meta-learning »
Hansi Yang · James Kwok -
2022 Spotlight: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Spotlight: Fast and Provable Nonconvex Tensor RPCA »
Haiquan Qiu · Yao Wang · Shaojie Tang · Deyu Meng · QUANMING YAO -
2022 Spotlight: Efficient Variance Reduction for Meta-learning »
Hansi Yang · James Kwok -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 Poster: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Poster: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection »
Hanshu YAN · Jingfeng Zhang · Gang Niu · Jiashi Feng · Vincent Tan · Masashi Sugiyama -
2021 Poster: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama -
2021 Spotlight: CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection »
Hanshu YAN · Jingfeng Zhang · Gang Niu · Jiashi Feng · Vincent Tan · Masashi Sugiyama -
2021 Spotlight: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Spotlight: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama -
2021 Poster: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Poster: SparseBERT: Rethinking the Importance Analysis in Self-attention »
Han Shi · Jiahui Gao · Xiaozhe Ren · Hang Xu · Xiaodan Liang · Zhenguo Li · James Kwok -
2021 Poster: Pointwise Binary Classification with Pairwise Confidence Comparisons »
Lei Feng · Senlin Shu · Nan Lu · Bo Han · Miao Xu · Gang Niu · Bo An · Masashi Sugiyama -
2021 Poster: Binary Classification from Multiple Unlabeled Datasets via Surrogate Set Classification »
Nan Lu · Shida Lei · Gang Niu · Issei Sato · Masashi Sugiyama -
2021 Poster: Learning from Similarity-Confidence Data »
Yuzhou Cao · Lei Feng · Yitian Xu · Bo An · Gang Niu · Masashi Sugiyama -
2021 Poster: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2021 Poster: Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization »
Yivan Zhang · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learning from Similarity-Confidence Data »
Yuzhou Cao · Lei Feng · Yitian Xu · Bo An · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Pointwise Binary Classification with Pairwise Confidence Comparisons »
Lei Feng · Senlin Shu · Nan Lu · Bo Han · Miao Xu · Gang Niu · Bo An · Masashi Sugiyama -
2021 Spotlight: Binary Classification from Multiple Unlabeled Datasets via Surrogate Set Classification »
Nan Lu · Shida Lei · Gang Niu · Issei Sato · Masashi Sugiyama -
2021 Spotlight: SparseBERT: Rethinking the Importance Analysis in Self-attention »
Han Shi · Jiahui Gao · Xiaozhe Ren · Hang Xu · Xiaodan Liang · Zhenguo Li · James Kwok -
2021 Oral: Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization »
Yivan Zhang · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Oral: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2021 Poster: Large-Margin Contrastive Learning with Distance Polarization Regularizer »
Shuo Chen · Gang Niu · Chen Gong · Jun Li · Jian Yang · Masashi Sugiyama -
2021 Spotlight: Large-Margin Contrastive Learning with Distance Polarization Regularizer »
Shuo Chen · Gang Niu · Chen Gong · Jun Li · Jian Yang · Masashi Sugiyama -
2020 Poster: Do We Need Zero Training Loss After Achieving Zero Training Error? »
Takashi Ishida · Ikko Yamane · Tomoya Sakai · Gang Niu · Masashi Sugiyama -
2020 Poster: Progressive Identification of True Labels for Partial-Label Learning »
Jiaqi Lv · Miao Xu · LEI FENG · Gang Niu · Xin Geng · Masashi Sugiyama -
2020 Poster: SIGUA: Forgetting May Make Learning with Noisy Labels More Robust »
Bo Han · Gang Niu · Xingrui Yu · QUANMING YAO · Miao Xu · Ivor Tsang · Masashi Sugiyama -
2020 Poster: Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels »
Yu-Ting Chou · Gang Niu · Hsuan-Tien Lin · Masashi Sugiyama -
2020 Poster: Attacks Which Do Not Kill Training Make Adversarial Learning Stronger »
Jingfeng Zhang · Xilie Xu · Bo Han · Gang Niu · Lizhen Cui · Masashi Sugiyama · Mohan Kankanhalli -
2020 Poster: Variational Imitation Learning with Diverse-quality Demonstrations »
Voot Tangkaratt · Bo Han · Mohammad Emtiyaz Khan · Masashi Sugiyama -
2020 Poster: Learning with Multiple Complementary Labels »
LEI FENG · Takuo Kaneko · Bo Han · Gang Niu · Bo An · Masashi Sugiyama -
2019 : Spotlight »
Tyler Scott · Kiran Koshy · Jonathan Aigrain · Rene Bidart · Priyadarshini Panda · Dian Ang Yap · Yaniv Yacoby · Raphael Gontijo Lopes · Alberto Marchisio · Erik Englesson · Wanqian Yang · Moritz Graule · Yi Sun · Daniel Kang · Mike Dusenberry · Min Du · Hartmut Maennel · Kunal Menda · Vineet Edupuganti · Luke Metz · David Stutz · Vignesh Srinivasan · Timo Sämann · Vineeth N Balasubramanian · Sina Mohseni · Rob Cornish · Judith Butepage · Zhangyang Wang · Bai Li · Bo Han · Honglin Li · Maksym Andriushchenko · Lukas Ruff · Meet P. Vadera · Yaniv Ovadia · Sunil Thulasidasan · Disi Ji · Gang Niu · Saeed Mahloujifar · Aviral Kumar · SANGHYUK CHUN · Dong Yin · Joyce Xu Xu · Hugo Gomes · Raanan Rohekar -
2019 Poster: Classification from Positive, Unlabeled and Biased Negative Data »
Yu-Guan Hsieh · Gang Niu · Masashi Sugiyama -
2019 Poster: Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations »
Quanming Yao · James Kwok · Bo Han -
2019 Poster: Complementary-Label Learning for Arbitrary Losses and Models »
Takashi Ishida · Gang Niu · Aditya Menon · Masashi Sugiyama -
2019 Oral: Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations »
Quanming Yao · James Kwok · Bo Han -
2019 Oral: Complementary-Label Learning for Arbitrary Losses and Models »
Takashi Ishida · Gang Niu · Aditya Menon · Masashi Sugiyama -
2019 Oral: Classification from Positive, Unlabeled and Biased Negative Data »
Yu-Guan Hsieh · Gang Niu · Masashi Sugiyama -
2019 Poster: How does Disagreement Help Generalization against Label Corruption? »
Xingrui Yu · Bo Han · Jiangchao Yao · Gang Niu · Ivor Tsang · Masashi Sugiyama -
2019 Oral: How does Disagreement Help Generalization against Label Corruption? »
Xingrui Yu · Bo Han · Jiangchao Yao · Gang Niu · Ivor Tsang · Masashi Sugiyama -
2018 Poster: Classification from Pairwise Similarity and Unlabeled Data »
Han Bao · Gang Niu · Masashi Sugiyama -
2018 Oral: Classification from Pairwise Similarity and Unlabeled Data »
Han Bao · Gang Niu · Masashi Sugiyama -
2018 Poster: Does Distributionally Robust Supervised Learning Give Robust Classifiers? »
Weihua Hu · Gang Niu · Issei Sato · Masashi Sugiyama -
2018 Oral: Does Distributionally Robust Supervised Learning Give Robust Classifiers? »
Weihua Hu · Gang Niu · Issei Sato · Masashi Sugiyama -
2018 Poster: Online Convolutional Sparse Coding with Sample-Dependent Dictionary »
Yaqing WANG · Quanming Yao · James Kwok · Lionel NI -
2018 Poster: Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data »
Shuai Zheng · James Kwok -
2018 Oral: Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data »
Shuai Zheng · James Kwok -
2018 Oral: Online Convolutional Sparse Coding with Sample-Dependent Dictionary »
Yaqing WANG · Quanming Yao · James Kwok · Lionel NI -
2017 Poster: Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data »
Tomoya Sakai · Marthinus C du Plessis · Gang Niu · Masashi Sugiyama -
2017 Poster: Follow the Moving Leader in Deep Learning »
Shuai Zheng · James Kwok -
2017 Talk: Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data »
Tomoya Sakai · Marthinus C du Plessis · Gang Niu · Masashi Sugiyama -
2017 Talk: Follow the Moving Leader in Deep Learning »
Shuai Zheng · James Kwok