Timezone: »

 
Poster
Deep Graph Random Process for Relational-Thinking-Based Speech Recognition
Huang Hengguan · Fuzhao Xue · Hao Wang · Ye Wang

Thu Jul 16 06:00 AM -- 06:45 AM & Thu Jul 16 07:00 PM -- 07:45 PM (PDT) @ Virtual

Lying at the core of human intelligence, relational thinking is characterized by initially relying on innumerable unconscious percepts pertaining to relations between new sensory signals and prior knowledge, consequently becoming a recognizable concept or object through coupling and transformation of these percepts. Such mental processes are difficult to model in real-world problems such as in conversational automatic speech recognition (ASR), as the percepts (if they are modelled as graphs indicating relationships among utterances) are supposed to be innumerable and not directly observable. In this paper, we present a Bayesian nonparametric deep learning method called deep graph random process (DGP) that can generate an infinite number of probabilistic graphs representing percepts. We further provide a closed-form solution for coupling and transformation of these percept graphs for acoustic modeling. Our approach is able to successfully infer relations among utterances without using any relational data during training. Experimental evaluations on ASR tasks including CHiME-2 and CHiME-5 demonstrate the effectiveness and benefits of our method.

Author Information

Huang Hengguan (NUS)
Fuzhao Xue (National University of Singapore)
Hao Wang (MIT)
Hao Wang

Dr. Hao Wang is currently an assistant professor in the department of computer science at Rutgers University. Previously he was a Postdoctoral Associate at the Computer Science & Artificial Intelligence Lab (CSAIL) of MIT, working with Dina Katabi and Tommi Jaakkola. He received his PhD degree from the Hong Kong University of Science and Technology, as the sole recipient of the School of Engineering PhD Research Excellence Award in 2017. He has been a visiting researcher in the Machine Learning Department of Carnegie Mellon University. His research focuses on statistical machine learning, deep learning, and data mining, with broad applications on recommender systems, healthcare, user profiling, social network analysis, text mining, etc. His work on Bayesian deep learning for recommender systems and personalized modeling has inspired hundreds of follow-up works published at top conferences such as AAAI, ICML, IJCAI, KDD, NIPS, SIGIR, and WWW. It has received over 1000 citations, becoming the most cited paper at KDD 2015. In 2015, he was awarded the Microsoft Fellowship in Asia and the Baidu Research Fellowship for his innovation on Bayesian deep learning and its applications on data mining and social network analysis.

Ye Wang (National University of Singapore)

More from the Same Authors