Timezone: »
We consider the problem of approximating the stationary distribution of an ergodic Markov chain given a set of sampled transitions. Classical simulation-based approaches assume access to the underlying process so that trajectories of sufficient length can be gathered to approximate stationary sampling. Instead, we consider an alternative setting where a \emph{fixed} set of transitions has been collected beforehand, by a separate, possibly unknown procedure. The goal is still to estimate properties of the stationary distribution, but without additional access to the underlying system. We propose a consistent estimator that is based on recovering a correction ratio function over the given data. In particular, we develop a variational power method (VPM) that provides provably consistent estimates under general conditions. In addition to unifying a number of existing approaches from different subfields, we also find that VPM yields significantly better estimates across a range of problems, including queueing, stochastic differential equations, post-processing MCMC, and off-policy evaluation.
Author Information
Junfeng Wen (University of Alberta)
Bo Dai (Google Brain)
Lihong Li (Google Research)
Dale Schuurmans (University of Alberta)
More from the Same Authors
-
2022 : SAFER: Data-Efficient and Safe Reinforcement Learning via Skill Acquisition »
Dylan Slack · Yinlam Chow · Bo Dai · Nevan Wichers -
2022 : Multimodal Masked Autoencoders Learn Transferable Representations »
Xinyang Geng · Hao Liu · Lisa Lee · Dale Schuurmans · Sergey Levine · Pieter Abbeel -
2023 : DISCS: A Benchmark for Discrete Sampling »
Katayoon Goshvadi · Haoran Sun · Xingchao Liu · Azade Nova · Ruqi Zhang · Will Grathwohl · Dale Schuurmans · Hanjun Dai -
2023 Poster: Stochastic Gradient Succeeds for Bandits »
Jincheng Mei · Zixin Zhong · Bo Dai · Alekh Agarwal · Csaba Szepesvari · Dale Schuurmans -
2023 Poster: Revisiting Sampling for Combinatorial Optimization »
Haoran Sun · Katayoon Goshvadi · Azade Nova · Dale Schuurmans · Hanjun Dai -
2023 Poster: Gradient-Free Structured Pruning with Unlabeled Data »
Azade Nova · Hanjun Dai · Dale Schuurmans -
2022 : Multimodal Masked Autoencoders Learn Transferable Representations »
Xinyang Geng · Hao Liu · Lisa Lee · Dale Schuurmans · Sergey Levine · Pieter Abbeel -
2022 Poster: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2022 Poster: Making Linear MDPs Practical via Contrastive Representation Learning »
Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai -
2022 Spotlight: Making Linear MDPs Practical via Contrastive Representation Learning »
Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai -
2022 Spotlight: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2022 Poster: Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization »
Hanjun Dai · Mengjiao Yang · Yuan Xue · Dale Schuurmans · Bo Dai -
2022 Spotlight: Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization »
Hanjun Dai · Mengjiao Yang · Yuan Xue · Dale Schuurmans · Bo Dai -
2021 : Invited Speaker: Bo Dai: Leveraging Non-uniformity in Policy Gradient »
Bo Dai -
2021 : RL + Recommender Systems Panel »
Alekh Agarwal · Ed Chi · Maria Dimakopoulou · Georgios Theocharous · Minmin Chen · Lihong Li -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor -
2021 Poster: Overcoming Catastrophic Forgetting by Bayesian Generative Regularization »
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai -
2021 Spotlight: Overcoming Catastrophic Forgetting by Bayesian Generative Regularization »
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai -
2021 Poster: Near-Optimal Representation Learning for Linear Bandits and Linear RL »
Jiachen Hu · Xiaoyu Chen · Chi Jin · Lihong Li · Liwei Wang -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Poster: Leveraging Non-uniformity in First-order Non-convex Optimization »
Jincheng Mei · Yue Gao · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: Leveraging Non-uniformity in First-order Non-convex Optimization »
Jincheng Mei · Yue Gao · Bo Dai · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: Near-Optimal Representation Learning for Linear Bandits and Linear RL »
Jiachen Hu · Xiaoyu Chen · Chi Jin · Lihong Li · Liwei Wang -
2021 Poster: Characterizing the Gap Between Actor-Critic and Policy Gradient »
Junfeng Wen · Saurabh Kumar · Ramki Gummadi · Dale Schuurmans -
2021 Spotlight: Characterizing the Gap Between Actor-Critic and Policy Gradient »
Junfeng Wen · Saurabh Kumar · Ramki Gummadi · Dale Schuurmans -
2021 Poster: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2021 Spotlight: On the Optimality of Batch Policy Optimization Algorithms »
Chenjun Xiao · Yifan Wu · Jincheng Mei · Bo Dai · Tor Lattimore · Lihong Li · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Energy-Based Processes for Exchangeable Data »
Mengjiao Yang · Bo Dai · Hanjun Dai · Dale Schuurmans -
2020 Poster: On the Global Convergence Rates of Softmax Policy Gradient Methods »
Jincheng Mei · Chenjun Xiao · Csaba Szepesvari · Dale Schuurmans -
2020 Poster: Domain Aggregation Networks for Multi-Source Domain Adaptation »
Junfeng Wen · Russell Greiner · Dale Schuurmans -
2020 Poster: Neural Contextual Bandits with UCB-based Exploration »
Dongruo Zhou · Lihong Li · Quanquan Gu -
2020 Poster: Scalable Deep Generative Modeling for Sparse Graphs »
Hanjun Dai · Azade Nova · Yujia Li · Bo Dai · Dale Schuurmans -
2019 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Alborz Geramifard · Lihong Li · Csaba Szepesvari · Tao Wang -
2019 Poster: Policy Certificates: Towards Accountable Reinforcement Learning »
Christoph Dann · Lihong Li · Wei Wei · Emma Brunskill -
2019 Oral: Policy Certificates: Towards Accountable Reinforcement Learning »
Christoph Dann · Lihong Li · Wei Wei · Emma Brunskill -
2018 Poster: Smoothed Action Value Functions for Learning Gaussian Policies »
Ofir Nachum · Mohammad Norouzi · George Tucker · Dale Schuurmans -
2018 Poster: Scalable Bilinear Pi Learning Using State and Action Features »
Yichen Chen · Lihong Li · Mengdi Wang -
2018 Poster: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Poster: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Oral: Towards Black-box Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Xingguo Li · Zhen Liu · James Rehg · Le Song -
2018 Oral: Smoothed Action Value Functions for Learning Gaussian Policies »
Ofir Nachum · Mohammad Norouzi · George Tucker · Dale Schuurmans -
2018 Oral: Scalable Bilinear Pi Learning Using State and Action Features »
Yichen Chen · Lihong Li · Mengdi Wang -
2018 Oral: SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation »
Bo Dai · Albert Shaw · Lihong Li · Lin Xiao · Niao He · Zhen Liu · Jianshu Chen · Le Song -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2017 Poster: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Talk: Stochastic Generative Hashing »
Bo Dai · Ruiqi Guo · Sanjiv Kumar · Niao He · Le Song -
2017 Poster: Stochastic Variance Reduction Methods for Policy Evaluation »
Simon Du · Jianshu Chen · Lihong Li · Lin Xiao · Dengyong Zhou -
2017 Talk: Stochastic Variance Reduction Methods for Policy Evaluation »
Simon Du · Jianshu Chen · Lihong Li · Lin Xiao · Dengyong Zhou -
2017 Poster: Provably Optimal Algorithms for Generalized Linear Contextual Bandits »
Lihong Li · Yu Lu · Dengyong Zhou -
2017 Poster: Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Ahmad Humayun · Charlene Tay · Chen Yu · Linda Smith · James Rehg · Le Song -
2017 Talk: Iterative Machine Teaching »
Weiyang Liu · Bo Dai · Ahmad Humayun · Charlene Tay · Chen Yu · Linda Smith · James Rehg · Le Song -
2017 Talk: Provably Optimal Algorithms for Generalized Linear Contextual Bandits »
Lihong Li · Yu Lu · Dengyong Zhou