Timezone: »
Most recommender systems (RS) research assumes that a user's utility can be maximized independently of the utility of the other agents (e.g., other users, content providers). In realistic settings, this is often not true -- the dynamics of an RS ecosystem couple the long-term utility of all agents. In this work, we explore settings in which content providers cannot remain viable unless they receive a certain level of user engagement. We formulate this problem as one of equilibrium selection in the induced dynamical system, and show that it can be solved as an optimal constrained matching problem. Our model ensures the system reaches an equilibrium with maximal social welfare supported by a sufficiently diverse set of viable providers. We demonstrate that even in a simple, stylized dynamical RS model, the standard myopic approach to recommendation - always matching a user to the best provider - performs poorly. We develop several scalable techniques to solve the matching problem, and also draw connections to various notions of user regret and fairness, arguing that these outcomes are fairer in a utilitarian sense.
Author Information
Martin Mladenov (Google)
Elliot Creager (University of Toronto)
Omer Ben-Porat (Technion--Israel Institute of Technology)
Kevin Swersky (Google Brain)
Richard Zemel (Vector Institute)
Craig Boutilier (Google)
More from the Same Authors
-
2020 Workshop: Participatory Approaches to Machine Learning »
Angela Zhou · David Madras · Deborah Raji · Smitha Milli · Bogdan Kulynych · Richard Zemel -
2020 Workshop: Graph Representation Learning and Beyond (GRL+) »
Petar Veličković · Michael M. Bronstein · Andreea Deac · Will Hamilton · Jessica Hamrick · Milad Hashemi · Stefanie Jegelka · Jure Leskovec · Renjie Liao · Federico Monti · Yizhou Sun · Kevin Swersky · Rex (Zhitao) Ying · Marinka Žitnik -
2020 Poster: An Imitation Learning Approach for Cache Replacement »
Evan Liu · Milad Hashemi · Kevin Swersky · Parthasarathy Ranganathan · Junwhan Ahn -
2020 Poster: ConQUR: Mitigating Delusional Bias in Deep Q-Learning »
DiJia Su · Jayden Ooi · Tyler Lu · Dale Schuurmans · Craig Boutilier -
2020 Poster: Causal Modeling for Fairness In Dynamical Systems »
Elliot Creager · David Madras · Toniann Pitassi · Richard Zemel -
2020 Poster: Fiduciary Bandits »
Gal Bahar · Omer Ben-Porat · Kevin Leyton-Brown · Moshe Tennenholtz -
2020 Poster: Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling »
Will Grathwohl · Kuan-Chieh Wang · Joern-Henrik Jacobsen · David Duvenaud · Richard Zemel -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 Poster: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Poster: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Oral: Lorentzian Distance Learning for Hyperbolic Representations »
Marc Law · Renjie Liao · Jake Snell · Richard Zemel -
2019 Oral: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Poster: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2019 Oral: Understanding the Origins of Bias in Word Embeddings »
Marc-Etienne Brunet · Colleen Alkalay-Houlihan · Ashton Anderson · Richard Zemel -
2018 Poster: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Oral: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Poster: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · KiJung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Poster: Learning Memory Access Patterns »
Milad Hashemi · Kevin Swersky · Jamie Smith · Grant Ayers · Heiner Litz · Jichuan Chang · Christos Kozyrakis · Parthasarathy Ranganathan -
2018 Poster: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Distilling the Posterior in Bayesian Neural Networks »
Kuan-Chieh Wang · Paul Vicol · James Lucas · Li Gu · Roger Grosse · Richard Zemel -
2018 Oral: Reviving and Improving Recurrent Back-Propagation »
Renjie Liao · Yuwen Xiong · Ethan Fetaya · Lisa Zhang · KiJung Yoon · Zachary S Pitkow · Raquel Urtasun · Richard Zemel -
2018 Oral: Learning Memory Access Patterns »
Milad Hashemi · Kevin Swersky · Jamie Smith · Grant Ayers · Heiner Litz · Jichuan Chang · Christos Kozyrakis · Parthasarathy Ranganathan -
2018 Poster: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2018 Oral: Neural Relational Inference for Interacting Systems »
Thomas Kipf · Ethan Fetaya · Kuan-Chieh Wang · Max Welling · Richard Zemel -
2017 Poster: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel -
2017 Talk: Deep Spectral Clustering Learning »
Marc Law · Raquel Urtasun · Richard Zemel