Timezone: »
Poster
Provable Self-Play Algorithms for Competitive Reinforcement Learning
Yu Bai · Chi Jin
Wed Jul 15 09:00 AM -- 09:45 AM & Wed Jul 15 10:00 PM -- 10:45 PM (PDT) @ None #None
Self-play, where the algorithm learns by playing against itself without requiring any direct supervision, has become the new weapon in modern Reinforcement Learning (RL) for achieving superhuman performance in practice. However, the majority of exisiting theory in reinforcement learning only applies to the setting where the agent plays against a fixed environment; it remains largely open whether self-play algorithms can be provably effective, especially when it is necessary to manage the exploration/exploitation tradeoff. We study self-play in competitive reinforcement learning under the setting of Markov games, a generalization of Markov decision processes to the two-player case. We introduce a self-play algorithm---Value Iteration with Upper/Lower Confidence Bound (VI-ULCB)---and show that it achieves regret $\mathcal{\tilde{O}}(\sqrt{T})$ after playing $T$ steps of the game, where the regret is measured by the agent's performance against a fully adversarial opponent who can exploit the agent's strategy at any step. We also introduce an explore-then-exploit style algorithm, which achieves a slightly worse regret of $\mathcal{\tilde{O}}(T^{2/3})$, but is guaranteed to run in polynomial time even in the worst case. To the best of our knowledge, our work presents the first line of provably sample-efficient self-play algorithms for competitive reinforcement learning.
Author Information
Yu Bai (Salesforce Research)
Chi Jin (Princeton University)
More from the Same Authors
-
2020 Poster: On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems »
Darren Lin · Chi Jin · Michael Jordan -
2020 Poster: Reward-Free Exploration for Reinforcement Learning »
Chi Jin · Akshay Krishnamurthy · Max Simchowitz · Tiancheng Yu -
2020 Poster: Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition »
Chi Jin · Tiancheng Jin · Haipeng Luo · Suvrit Sra · Tiancheng Yu -
2020 Poster: Provably Efficient Exploration in Policy Optimization »
Qi Cai · Zhuoran Yang · Chi Jin · Zhaoran Wang -
2020 Poster: What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization? »
Chi Jin · Praneeth Netrapalli · Michael Jordan