Timezone: »
Poster
Data-Dependent Differentially Private Parameter Learning for Directed Graphical Models
Amrita Roy Chowdhury · Theodoros Rekatsinas · Somesh Jha
Thu Jul 16 07:00 AM -- 07:45 AM & Thu Jul 16 06:00 PM -- 06:45 PM (PDT) @
Directed graphical models (DGMs) are a class of probabilistic models that are widely used for predictive analysis in sensitive domains such as medical diagnostics. In this paper, we present an algorithm for differentially-private learning of the parameters of a DGM. Our solution optimizes for the utility of inference queries over the DGM and \textit{adds noise that is customized to the properties of the private input dataset and the graph structure of the DGM}. To the best of our knowledge, this is the first explicit data-dependent privacy budget allocation algorithm in the context of DGMs. We compare our algorithm with a standard data-independent approach over a diverse suite of benchmarks and demonstrate that our solution requires a privacy budget that is roughly $3\times$ smaller to obtain the same or higher utility.
Author Information
Amrita Roy Chowdhury (University of Wisconsin-Madison)
Theodoros Rekatsinas (University of Wisconsin-Madison)
Somesh Jha (University of Wisconsin, Madison)
More from the Same Authors
-
2021 : A Shuffling Framework For Local Differential Privacy »
Casey M Meehan · Amrita Roy Chowdhury · Kamalika Chaudhuri · Somesh Jha -
2022 : The Trade-off between Label Efficiency and Universality of Representations from Contrastive Learning »
Zhenmei Shi · Zhenmei Shi · Jiefeng Chen · Jiefeng Chen · Kunyang Li · Kunyang Li · Jayaram Raghuram · Jayaram Raghuram · Xi Wu · Xi Wu · Yingyiu Liang · Yingyiu Liang · Somesh Jha · Somesh Jha -
2023 Poster: Concept-based Explanations for Out-of-Distribution Detectors »
Jihye Choi · Jayaram Raghuram · Ryan Feng · Jiefeng Chen · Somesh Jha · Atul Prakash -
2023 Poster: Stratified Adversarial Robustness with Rejection »
Jiefeng Chen · Jayaram Raghuram · Jihye Choi · Xi Wu · Yingyiu Liang · Somesh Jha -
2022 : Adversarial Robustness and Cryptography »
Somesh Jha -
2021 Poster: A General Framework For Detecting Anomalous Inputs to DNN Classifiers »
Jayaram Raghuram · Varun Chandrasekaran · Somesh Jha · Suman Banerjee -
2021 Oral: A General Framework For Detecting Anomalous Inputs to DNN Classifiers »
Jayaram Raghuram · Varun Chandrasekaran · Somesh Jha · Suman Banerjee -
2021 Poster: Sample Complexity of Robust Linear Classification on Separated Data »
Robi Bhattacharjee · Somesh Jha · Kamalika Chaudhuri -
2021 Spotlight: Sample Complexity of Robust Linear Classification on Separated Data »
Robi Bhattacharjee · Somesh Jha · Kamalika Chaudhuri -
2020 Poster: Concise Explanations of Neural Networks using Adversarial Training »
Prasad Chalasani · Jiefeng Chen · Amrita Roy Chowdhury · Xi Wu · Somesh Jha -
2020 Poster: CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods »
Wei Zhang · Thomas Panum · Somesh Jha · Prasad Chalasani · David Page -
2019 Workshop: Workshop on the Security and Privacy of Machine Learning »
Nicolas Papernot · Florian Tramer · Bo Li · Dan Boneh · David Evans · Somesh Jha · Percy Liang · Patrick McDaniel · Jacob Steinhardt · Dawn Song -
2018 Poster: Analyzing the Robustness of Nearest Neighbors to Adversarial Examples »
Yizhen Wang · Somesh Jha · Kamalika Chaudhuri -
2018 Oral: Analyzing the Robustness of Nearest Neighbors to Adversarial Examples »
Yizhen Wang · Somesh Jha · Kamalika Chaudhuri -
2018 Poster: Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training »
Xi Wu · Wooyeong Jang · Jiefeng Chen · Lingjiao Chen · Somesh Jha -
2018 Oral: Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training »
Xi Wu · Wooyeong Jang · Jiefeng Chen · Lingjiao Chen · Somesh Jha