Timezone: »
We propose a novel gradient-based tractable approach for the Blahut-Arimoto (BA) algorithm to compute the rate-distortion function where the BA algorithm is fully parameterized. This results in a rich and flexible framework to learn a new class of stochastic encoders, termed PArameterized RAte-DIstortion Stochastic Encoder (PARADISE). The framework can be applied to a wide range of settings from semi-supervised, multi-task to supervised and robust learning. We show that the training objective of PARADISE can be seen as a form of regularization that helps improve generalization. With an emphasis on robust learning we further develop a novel posterior matching objective to encourage smoothness on the loss function and show that PARADISE can significantly improve interpretability as well as robustness to adversarial attacks on the CIFAR-10 and ImageNet datasets. In particular, on the CIFAR-10 dataset, our model reduces standard and adversarial error rates in comparison to the state-of-the-art by 50% and 41%, respectively without the expensive computational cost of adversarial training.
Author Information
Quan Hoang (Monash University)
Trung Le (Monash University)
Dinh Phung (Monash University, Australia)
More from the Same Authors
-
2023 Poster: Vector Quantized Wasserstein Auto-Encoder »
Tung-Long Vuong · Trung Le · He Zhao · Chuanxia Zheng · Mehrtash Harandi · Jianfei Cai · Dinh Phung -
2022 Poster: On Transportation of Mini-batches: A Hierarchical Approach »
Khai Nguyen · Dang Nguyen · Quoc Nguyen · Tung Pham · Hung Bui · Dinh Phung · Trung Le · Nhat Ho -
2022 Spotlight: On Transportation of Mini-batches: A Hierarchical Approach »
Khai Nguyen · Dang Nguyen · Quoc Nguyen · Tung Pham · Hung Bui · Dinh Phung · Trung Le · Nhat Ho -
2021 Poster: LAMDA: Label Matching Deep Domain Adaptation »
Trung Le · Tuan Nguyen · Nhat Ho · Hung Bui · Dinh Phung -
2021 Spotlight: LAMDA: Label Matching Deep Domain Adaptation »
Trung Le · Tuan Nguyen · Nhat Ho · Hung Bui · Dinh Phung