Timezone: »
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics. In this work, we propose a simple yet effective framework that can efficiently predict plausible future states. The key insight is that the potential distribution of a sequence could be approximated with analogous ones in a repertoire of training pool, namely, expert examples. By further incorporating a novel optimization scheme into the training procedure, plausible predictions can be sampled efficiently from distribution constructed from the retrieved examples. Meanwhile, our method could be seamlessly integrated with existing stochastic predictive models; significant enhancement is observed with comprehensive experiments in both quantitative and qualitative aspects. We also demonstrate the generalization ability to predict the motion of unseen class, i.e., without access to corresponding data during training phase.
Author Information
Jingwei Xu (Shanghai Jiao Tong University)
Harry (Huazhe) Xu (UC Berkeley)
I am a 2nd year phd at UC Berkeley doing RL and vision under Prof. Trevor Darrell. I also actively collaborate with Prof. Sergey Levine and Prof. Tengyu Ma
Bingbing Ni (Shanghai Jiao Tong University)
Xiaokang Yang (Shanghai Jiao Tong University of China)
Trevor Darrell (University of California at Berkeley)
More from the Same Authors
-
2021 : Disentangled Attention as Intrinsic Regularization for Bimanual Multi-Object Manipulation »
Minghao Zhang · Pingcheng Jian · Yi Wu · Harry (Huazhe) Xu · Xiaolong Wang -
2021 : Learning Vision-Guided Quadrupedal Locomotionwith Cross-Modal Transformers »
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Harry (Huazhe) Xu · Xiaolong Wang -
2021 : Explaining Reinforcement Learning Policies through Counterfactual Trajectories »
Julius Frost · Olivia Watkins · Eric Weiner · Pieter Abbeel · Trevor Darrell · Bryan Plummer · Kate Saenko -
2023 : LLM-grounded Text-to-Image Diffusion Models »
Long (Tony) Lian · Boyi Li · Adam Yala · Trevor Darrell -
2023 Poster: LinSATNet: The Positive Linear Satisfiability Neural Networks »
Runzhong Wang · Yunhao Zhang · Ziao Guo · Tianyi Chen · Xiaokang Yang · Junchi Yan -
2022 : Back to the Source: Test-Time Diffusion-Driven Adaptation »
Jin Gao · Jialing Zhang · Xihui Liu · Trevor Darrell · Evan Shelhamer · Dequan Wang -
2022 Poster: Visual Attention Emerges from Recurrent Sparse Reconstruction »
Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang -
2022 Poster: NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields »
Shanyan Guan · Huayu Deng · Yunbo Wang · Xiaokang Yang -
2022 Spotlight: Visual Attention Emerges from Recurrent Sparse Reconstruction »
Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang -
2022 Spotlight: NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural Radiance Fields »
Shanyan Guan · Huayu Deng · Yunbo Wang · Xiaokang Yang -
2022 Poster: Zero-Shot Reward Specification via Grounded Natural Language »
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell -
2022 Spotlight: Zero-Shot Reward Specification via Grounded Natural Language »
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell -
2021 Workshop: ICML Workshop on Human in the Loop Learning (HILL) »
Trevor Darrell · Xin Wang · Li Erran Li · Fisher Yu · Zeynep Akata · Wenwu Zhu · Pradeep Ravikumar · Shiji Zhou · Shanghang Zhang · Kalesha Bullard -
2021 Poster: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Poster: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Spotlight: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Spotlight: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Poster: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Spotlight: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2020 Workshop: 2nd ICML Workshop on Human in the Loop Learning (HILL) »
Shanghang Zhang · Xin Wang · Fisher Yu · Jiajun Wu · Trevor Darrell -
2020 Poster: Frustratingly Simple Few-Shot Object Detection »
Xin Wang · Thomas Huang · Joseph E Gonzalez · Trevor Darrell · Fisher Yu -
2019 : Fisher Yu: "Motion and Prediction for Autonomous Driving" »
Fisher Yu · Trevor Darrell -
2018 Poster: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Judy Hoffman · Eric Tzeng · Taesung Park · Jun-Yan Zhu · Philip Isola · Kate Saenko · Alexei Efros · Trevor Darrell -
2018 Oral: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Judy Hoffman · Eric Tzeng · Taesung Park · Jun-Yan Zhu · Philip Isola · Kate Saenko · Alexei Efros · Trevor Darrell -
2017 Poster: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell -
2017 Talk: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell