Timezone: »

TaskNorm: Rethinking Batch Normalization for Meta-Learning
John Bronskill · Jonathan Gordon · James Requeima · Sebastian Nowozin · Richard E Turner

Tue Jul 14 12:00 PM -- 12:45 PM & Wed Jul 15 01:00 AM -- 01:45 AM (PDT) @ Virtual #None

Modern meta-learning approaches for image classification rely on increasingly deep networks to achieve state-of-the-art performance, making batch normalization an essential component of meta-learning pipelines. However, the hierarchical nature of the meta-learning setting presents several challenges that can render conventional batch normalization ineffective, giving rise to the need to rethink normalization in this setting. We evaluate a range of approaches to batch normalization for meta-learning scenarios, and develop a novel approach that we call TaskNorm. Experiments on fourteen datasets demonstrate that the choice of batch normalization has a dramatic effect on both classification accuracy and training time for both gradient based- and gradient-free meta-learning approaches. Importantly, TaskNorm is found to consistently improve performance. Finally, we provide a set of best practices for normalization that will allow fair comparison of meta-learning algorithms.

Author Information

John Bronskill (University of Cambridge)
Jonathan Gordon (University of Cambridge)
James Requeima (University of Cambridge)
Sebastian Nowozin (Microsoft Research)
Richard E Turner (University of Cambridge)

Richard Turner holds a Lectureship (equivalent to US Assistant Professor) in Computer Vision and Machine Learning in the Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, UK. He is a Fellow of Christ's College Cambridge. Previously, he held an EPSRC Postdoctoral research fellowship which he spent at both the University of Cambridge and the Laboratory for Computational Vision, NYU, USA. He has a PhD degree in Computational Neuroscience and Machine Learning from the Gatsby Computational Neuroscience Unit, UCL, UK and a M.Sci. degree in Natural Sciences (specialism Physics) from the University of Cambridge, UK. His research interests include machine learning, signal processing and developing probabilistic models of perception.

More from the Same Authors