Timezone: »
With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity. We show that the proposed architecture, when pre-trained on a curriculum of such tasks, learns to generate reusable representations that better facilitate subsequent learning on previously unseen tasks when compared to a number of baseline architectures. The workings of a successfully trained model are visualised to shed some light on how the architecture functions.
Author Information
Murray Shanahan (DeepMind / Imperial College London)
Kyriacos Nikiforou (DeepMind)
Antonia Creswell (Deep Mind)
Christos Kaplanis (DeepMind Technologies Ltd)
David GT Barrett (DeepMind)
Marta Garnelo (DeepMind)
More from the Same Authors
-
2021 : Learning to Represent State with Perceptual Schemata »
Wilka T Carvalho · Murray Shanahan -
2021 : Learning to Represent State with Perceptual Schemata »
Wilka Carvalho · Murray Shanahan -
2021 Poster: Discretization Drift in Two-Player Games »
Mihaela Rosca · Yan Wu · Benoit Dherin · David GT Barrett -
2021 Spotlight: Discretization Drift in Two-Player Games »
Mihaela Rosca · Yan Wu · Benoit Dherin · David GT Barrett -
2020 Poster: Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules »
Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio -
2019 Poster: Policy Consolidation for Continual Reinforcement Learning »
Christos Kaplanis · Murray Shanahan · Claudia Clopath -
2019 Poster: Open-ended learning in symmetric zero-sum games »
David Balduzzi · Marta Garnelo · Yoram Bachrach · Wojciech Czarnecki · Julien Perolat · Max Jaderberg · Thore Graepel -
2019 Oral: Open-ended learning in symmetric zero-sum games »
David Balduzzi · Marta Garnelo · Yoram Bachrach · Wojciech Czarnecki · Julien Perolat · Max Jaderberg · Thore Graepel -
2019 Oral: Policy Consolidation for Continual Reinforcement Learning »
Christos Kaplanis · Murray Shanahan · Claudia Clopath -
2018 Poster: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Oral: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Poster: Continual Reinforcement Learning with Complex Synapses »
Christos Kaplanis · Murray Shanahan · Claudia Clopath -
2018 Poster: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami -
2018 Oral: Continual Reinforcement Learning with Complex Synapses »
Christos Kaplanis · Murray Shanahan · Claudia Clopath -
2018 Oral: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami -
2017 Poster: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick -
2017 Talk: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick