Timezone: »
The choice of the control frequency of a system has a relevant impact on the ability of reinforcement learning algorithms to learn a highly performing policy. In this paper, we introduce the notion of action persistence that consists in the repetition of an action for a fixed number of decision steps, having the effect of modifying the control frequency. We start analyzing how action persistence affects the performance of the optimal policy, and then we present a novel algorithm, Persistent Fitted Q-Iteration (PFQI), that extends FQI, with the goal of learning the optimal value function at a given persistence. After having provided a theoretical study of PFQI and a heuristic approach to identify the optimal persistence, we present an experimental campaign on benchmark domains to show the advantages of action persistence and proving the effectiveness of our persistence selection method.
Author Information
Alberto Maria Metelli (Politecnico di Milano)
Flavio Mazzolini (Politecnico di Milano)
Lorenzo Bisi (Politecnico di Milano)
Luca Sabbioni (Politecnico di Milano)
Marcello Restelli (Politecnico di Milano)
More from the Same Authors
-
2020 Poster: Sequential Transfer in Reinforcement Learning with a Generative Model »
Andrea Tirinzoni · Riccardo Poiani · Marcello Restelli -
2019 Poster: Reinforcement Learning in Configurable Continuous Environments »
Alberto Maria Metelli · Emanuele Ghelfi · Marcello Restelli -
2019 Oral: Reinforcement Learning in Configurable Continuous Environments »
Alberto Maria Metelli · Emanuele Ghelfi · Marcello Restelli -
2019 Poster: Transfer of Samples in Policy Search via Multiple Importance Sampling »
Andrea Tirinzoni · Mattia Salvini · Marcello Restelli -
2019 Oral: Transfer of Samples in Policy Search via Multiple Importance Sampling »
Andrea Tirinzoni · Mattia Salvini · Marcello Restelli -
2019 Poster: Optimistic Policy Optimization via Multiple Importance Sampling »
Matteo Papini · Alberto Maria Metelli · Lorenzo Lupo · Marcello Restelli -
2019 Oral: Optimistic Policy Optimization via Multiple Importance Sampling »
Matteo Papini · Alberto Maria Metelli · Lorenzo Lupo · Marcello Restelli -
2018 Poster: Importance Weighted Transfer of Samples in Reinforcement Learning »
Andrea Tirinzoni · Andrea Sessa · Matteo Pirotta · Marcello Restelli -
2018 Poster: Stochastic Variance-Reduced Policy Gradient »
Matteo Papini · Damiano Binaghi · Giuseppe Canonaco · Matteo Pirotta · Marcello Restelli -
2018 Poster: Configurable Markov Decision Processes »
Alberto Maria Metelli · Mirco Mutti · Marcello Restelli -
2018 Oral: Importance Weighted Transfer of Samples in Reinforcement Learning »
Andrea Tirinzoni · Andrea Sessa · Matteo Pirotta · Marcello Restelli -
2018 Oral: Configurable Markov Decision Processes »
Alberto Maria Metelli · Mirco Mutti · Marcello Restelli -
2018 Oral: Stochastic Variance-Reduced Policy Gradient »
Matteo Papini · Damiano Binaghi · Giuseppe Canonaco · Matteo Pirotta · Marcello Restelli -
2017 Poster: Boosted Fitted Q-Iteration »
Samuele Tosatto · Matteo Pirotta · Carlo D'Eramo · Marcello Restelli -
2017 Talk: Boosted Fitted Q-Iteration »
Samuele Tosatto · Matteo Pirotta · Carlo D'Eramo · Marcello Restelli