Timezone: »

 
Poster
Projective Preferential Bayesian Optimization
Petrus Mikkola · Milica Todorović · Jari Järvi · Patrick Rinke · Samuel Kaski

Thu Jul 16 01:00 PM -- 01:45 PM & Fri Jul 17 02:00 AM -- 02:45 AM (PDT) @ None #None

Bayesian optimization is an effective method for finding extrema of a black-box function. We propose a new type of Bayesian optimization for learning user preferences in high-dimensional spaces. The central assumption is that the underlying objective function cannot be evaluated directly, but instead a minimizer along a projection can be queried, which we call a projective preferential query. The form of the query allows for feedback that is natural for a human to give, and which enables interaction. This is demonstrated in a user experiment in which the user feedback comes in the form of optimal position and orientation of a molecule adsorbing to a surface. We demonstrate that our framework is able to find a global minimum of a high-dimensional black-box function, which is an infeasible task for existing preferential Bayesian optimization frameworks that are based on pairwise comparisons.

Author Information

Petrus Mikkola (Aalto University)
Milica Todorović (Aalto University)
Jari Järvi (Aalto University)
Patrick Rinke (Aalto University)
Samuel Kaski (Aalto University and University of Manchester)

More from the Same Authors

  • 2021 Poster: Differentially Private Bayesian Inference for Generalized Linear Models »
    Tejas Kulkarni · Joonas Jälkö · Antti Koskela · Samuel Kaski · Antti Honkela
  • 2021 Spotlight: Differentially Private Bayesian Inference for Generalized Linear Models »
    Tejas Kulkarni · Joonas Jälkö · Antti Koskela · Samuel Kaski · Antti Honkela
  • 2019 : Networking Lunch (provided) + Poster Session »
    Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki
  • 2019 Poster: Active Learning for Decision-Making from Imbalanced Observational Data »
    Iiris Sundin · Peter Schulam · Eero Siivola · Aki Vehtari · Suchi Saria · Samuel Kaski
  • 2019 Oral: Active Learning for Decision-Making from Imbalanced Observational Data »
    Iiris Sundin · Peter Schulam · Eero Siivola · Aki Vehtari · Suchi Saria · Samuel Kaski
  • 2017 Workshop: Private and Secure Machine Learning »
    Antti Honkela · Kana Shimizu · Samuel Kaski