Timezone: »
Differential privacy (DP) is a formal notion for quantifying the privacy loss of algorithms. Algorithms in the central model of DP achieve high accuracy but make the strongest trust assumptions whereas those in the local DP model make the weakest trust assumptions but incur substantial accuracy loss. The shuffled DP model [Bittau et al 2017, Erlingsson et al 2019, Cheu et al 19] has recently emerged as a feasible middle ground between the central and local models, providing stronger trust assumptions than the former while promising higher accuracies than the latter. In this paper, we obtain practical communication-efficient algorithms in the shuffled DP model for two basic aggregation primitives used in machine learning: 1) binary summation, and 2) histograms over a moderate number of buckets. Our algorithms achieve accuracy that is arbitrarily close to that of central DP algorithms with an expected communication per user essentially matching what is needed without any privacy constraints! We demonstrate the practicality of our algorithms by experimentally evaluating them and comparing their performance to several widely-used protocols such as Randomized Response [Warner 1965] and RAPPOR [Erlingsson et al. 2014].
Author Information
Badih Ghazi (Google)
Ravi Kumar (Google)
Pasin Manurangsi (Google Research)
Rasmus Pagh (IT University of Copenhagen)
More from the Same Authors
-
2021 : Randomized Response with Prior and Applications to Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 : User-Level Private Learning via Correlated Sampling »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2022 Poster: Parsimonious Learning-Augmented Caching »
Sungjin Im · Ravi Kumar · Aditya Petety · Manish Purohit -
2022 Poster: RUMs from Head-to-Head Contests »
Matteo Almanza · Flavio Chierichetti · Ravi Kumar · Alessandro Panconesi · Andrew Tomkins -
2022 Spotlight: RUMs from Head-to-Head Contests »
Matteo Almanza · Flavio Chierichetti · Ravi Kumar · Alessandro Panconesi · Andrew Tomkins -
2022 Spotlight: Parsimonious Learning-Augmented Caching »
Sungjin Im · Ravi Kumar · Aditya Petety · Manish Purohit -
2022 Poster: Faster Privacy Accounting via Evolving Discretization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2022 Spotlight: Faster Privacy Accounting via Evolving Discretization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2021 Poster: Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha -
2021 Spotlight: Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha -
2021 Poster: Locally Private k-Means in One Round »
Alisa Chang · Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2021 Oral: Locally Private k-Means in One Round »
Alisa Chang · Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2021 Poster: Light RUMs »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2021 Spotlight: Light RUMs »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2020 Poster: Composable Sketches for Functions of Frequencies: Beyond the Worst Case »
Edith Cohen · Ofir Geri · Rasmus Pagh -
2020 Poster: Online Learning with Imperfect Hints »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2019 Poster: Recursive Sketches for Modular Deep Learning »
Badih Ghazi · Rina Panigrahy · Joshua R. Wang -
2019 Poster: Faster Algorithms for Binary Matrix Factorization »
Ravi Kumar · Rina Panigrahy · Ali Rahimi · David Woodruff -
2019 Oral: Faster Algorithms for Binary Matrix Factorization »
Ravi Kumar · Rina Panigrahy · Ali Rahimi · David Woodruff -
2019 Oral: Recursive Sketches for Modular Deep Learning »
Badih Ghazi · Rina Panigrahy · Joshua R. Wang -
2018 Poster: Learning a Mixture of Two Multinomial Logits »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2018 Oral: Learning a Mixture of Two Multinomial Logits »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2017 Poster: Algorithms for $\ell_p$ Low-Rank Approximation »
Flavio Chierichetti · Sreenivas Gollapudi · Ravi Kumar · Silvio Lattanzi · Rina Panigrahy · David Woodruff -
2017 Talk: Algorithms for $\ell_p$ Low-Rank Approximation »
Flavio Chierichetti · Sreenivas Gollapudi · Ravi Kumar · Silvio Lattanzi · Rina Panigrahy · David Woodruff