Timezone: »
The estimation of treatment effects is a pervasive problem in medicine. Existing methods for estimating treatment effects from longitudinal observational data assume that there are no hidden confounders, an assumption that is not testable in practice and, if it does not hold, leads to biased estimates. In this paper, we develop the Time Series Deconfounder, a method that leverages the assignment of multiple treatments over time to enable the estimation of treatment effects in the presence of multi-cause hidden confounders. The Time Series Deconfounder uses a novel recurrent neural network architecture with multitask output to build a factor model over time and infer latent variables that render the assigned treatments conditionally independent; then, it performs causal inference using these latent variables that act as substitutes for the multi-cause unobserved confounders. We provide a theoretical analysis for obtaining unbiased causal effects of time-varying exposures using the Time Series Deconfounder. Using both simulated and real data we show the effectiveness of our method in deconfounding the estimation of treatment responses over time.
Author Information
Ioana Bica (University of Oxford)
Ahmed Alaa (UCLA)
Mihaela van der Schaar (University of Cambridge and UCLA)
More from the Same Authors
-
2020 Poster: Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift »
Alexander Chan · Ahmed Alaa · Zhaozhi Qian · Mihaela van der Schaar -
2020 Poster: Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Temporal Phenotyping using Deep Predictive Clustering of Disease Progression »
Changhee Lee · Mihaela van der Schaar -
2020 Poster: Learning for Dose Allocation in Adaptive Clinical Trials with Safety Constraints »
Cong Shen · Zhiyang Wang · Sofia Villar · Mihaela van der Schaar -
2020 Poster: Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Inverse Active Sensing: Modeling and Understanding Timely Decision-Making »
Daniel Jarrett · Mihaela van der Schaar -
2020 Tutorial: Machine Learning for Healthcare: Challenges, Methods, Frontiers »
Mihaela van der Schaar -
2019 Poster: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2019 Oral: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2018 Poster: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Oral: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Poster: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2018 Oral: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa Ibrahim · Mihaela van der Schaar -
2017 Poster: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa Ibrahim · Scott B Hu · Mihaela van der Schaar -
2017 Talk: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa Ibrahim · Scott B Hu · Mihaela van der Schaar