Timezone: »
Poster
Coresets for Clustering in Graphs of Bounded Treewidth
Daniel Baker · Vladimir Braverman · Lingxiao Huang · Shaofeng H.-C. Jiang · Robert Krauthgamer · Xuan Wu
Wed Jul 15 08:00 AM -- 08:45 AM & Wed Jul 15 08:00 PM -- 08:45 PM (PDT) @
We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-path metric of edge-weighted graphs. Such clustering problems are essential to data analysis and used for example in road networks and data visualization. A coreset is a compact summary of the data that approximately preserves the clustering objective for every possible center set, and it offers significant efficiency improvements in terms of running time, storage, and communication, including in streaming and distributed settings. Our main result is a near-linear time construction of a coreset for k-Median in a general graph $G$, with size $O_{\epsilon, k}(\mathrm{tw}(G))$ where $\mathrm{tw}(G)$ is the treewidth of $G$, and we complement the construction with a nearly-tight size lower bound. The construction is based on the framework of Feldman and Langberg [STOC 2011], and our main technical contribution, as required by this framework, is a uniform bound of $O(\mathrm{tw}(G))$ on the shattering dimension under any point weights. We validate our coreset on real-world road networks, and our scalable algorithm constructs tiny coresets with high accuracy, which translates to a massive speedup of existing approximation algorithms such as local search for graph k-Median.
Author Information
Daniel Baker (Johns Hopkins University)
Vladimir Braverman (Johns Hopkins University)
Lingxiao Huang (Yale University)
Shaofeng H.-C. Jiang (Weizmann Institute of Science)
Robert Krauthgamer (Weizmann Institute of Science)
Xuan Wu (Johns Hopkins University)
More from the Same Authors
-
2021 : Adversarial Robustness of Streaming Algorithms through Importance Sampling »
Vladimir Braverman · Avinatan Hasidim · Yossi Matias · Mariano Schain · Sandeep Silwal · Samson Zhou -
2021 : Bi-directional Adaptive Communication for Heterogenous Distributed Learning »
Dmitrii Avdiukhin · Vladimir Braverman -
2021 : Gap-Dependent Unsupervised Exploration for Reinforcement Learning »
Jingfeng Wu · Vladimir Braverman · Lin Yang -
2022 : The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2023 Poster: On Coresets for Clustering in Small Dimensional Euclidean spaces »
Lingxiao Huang · Ruiyuan Huang · Zengfeng Huang · Xuan Wu -
2023 Poster: Finite-Sample Analysis of Learning High-Dimensional Single ReLU Neuron »
Jingfeng Wu · Difan Zou · Zixiang Chen · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2023 Poster: Provable Data Subset Selection For Efficient Neural Networks Training »
Morad Tukan · Samson Zhou · Alaa Maalouf · Daniela Rus · Vladimir Braverman · Dan Feldman -
2023 Poster: Subset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions »
Niclas Boehmer · L. Elisa Celis · Lingxiao Huang · Anay Mehrotra · Nisheeth K. Vishnoi -
2023 Poster: AutoCoreset: An Automatic Practical Coreset Construction Framework »
Alaa Maalouf · Morad Tukan · Vladimir Braverman · Daniela Rus -
2023 Poster: The Power of Uniform Sampling for k-Median »
Lingxiao Huang · Shaofeng Jiang · Jianing Lou -
2022 Poster: Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2022 Oral: Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression »
Jingfeng Wu · Difan Zou · Vladimir Braverman · Quanquan Gu · Sham Kakade -
2021 Poster: Fair Classification with Noisy Protected Attributes: A Framework with Provable Guarantees »
L. Elisa Celis · Lingxiao Huang · Vijay Keswani · Nisheeth K. Vishnoi -
2021 Spotlight: Fair Classification with Noisy Protected Attributes: A Framework with Provable Guarantees »
L. Elisa Celis · Lingxiao Huang · Vijay Keswani · Nisheeth K. Vishnoi -
2020 Poster: Schatten Norms in Matrix Streams: Hello Sparsity, Goodbye Dimension »
Vladimir Braverman · Robert Krauthgamer · Aditya Krishnan · Roi Sinoff -
2020 Poster: Obtaining Adjustable Regularization for Free via Iterate Averaging »
Jingfeng Wu · Vladimir Braverman · Lin Yang -
2020 Poster: On the Noisy Gradient Descent that Generalizes as SGD »
Jingfeng Wu · Wenqing Hu · Haoyi Xiong · Jun Huan · Vladimir Braverman · Zhanxing Zhu -
2020 Poster: FetchSGD: Communication-Efficient Federated Learning with Sketching »
Daniel Rothchild · Ashwinee Panda · Enayat Ullah · Nikita Ivkin · Ion Stoica · Vladimir Braverman · Joseph E Gonzalez · Raman Arora -
2019 Poster: Coresets for Ordered Weighted Clustering »
Vladimir Braverman · Shaofeng Jiang · Robert Krauthgamer · Xuan Wu -
2019 Oral: Coresets for Ordered Weighted Clustering »
Vladimir Braverman · Shaofeng Jiang · Robert Krauthgamer · Xuan Wu -
2018 Poster: Matrix Norms in Data Streams: Faster, Multi-Pass and Row-Order »
Vladimir Braverman · Stephen Chestnut · Robert Krauthgamer · Yi Li · David Woodruff · Lin Yang -
2018 Oral: Matrix Norms in Data Streams: Faster, Multi-Pass and Row-Order »
Vladimir Braverman · Stephen Chestnut · Robert Krauthgamer · Yi Li · David Woodruff · Lin Yang -
2017 Poster: Clustering High Dimensional Dynamic Data Streams »
Lin Yang · Harry Lang · Christian Sohler · Vladimir Braverman · Gereon Frahling -
2017 Talk: Clustering High Dimensional Dynamic Data Streams »
Lin Yang · Harry Lang · Christian Sohler · Vladimir Braverman · Gereon Frahling