Timezone: »
We propose a framework for learning neural scene representations directly from images, without 3D supervision. Our key insight is that 3D structure can be imposed by ensuring that the learned representation transforms like a real 3D scene. Specifically, we introduce a loss which enforces equivariance of the scene representation with respect to 3D transformations. Our formulation allows us to infer and render scenes in real time while achieving comparable results to models requiring minutes for inference. In addition, we introduce two challenging new datasets for scene representation and neural rendering, including scenes with complex lighting and backgrounds. Through experiments, we show that our model achieves compelling results on these datasets as well as on standard ShapeNet benchmarks.
Author Information
Emilien Dupont (University of Oxford)
Miguel Angel Bautista Martin (Apple Inc.)
Alex Colburn (Apple Inc.)
Aditya Sankar (Apple Inc.)
Joshua M Susskind (Apple, Inc.)
Qi Shan (Apple Inc)
More from the Same Authors
-
2021 : Implicit Acceleration and Feature Learning in Infinitely Wide Neural Networks with Bottlenecks »
Etai Littwin · Omid Saremi · Shuangfei Zhai · Vimal Thilak · Hanlin Goh · Joshua M Susskind · Greg Yang -
2021 : Implicit Greedy Rank Learning in Autoencoders via Overparameterized Linear Networks »
Shih-Yu Sun · Vimal Thilak · Etai Littwin · Omid Saremi · Joshua M Susskind -
2022 Poster: Efficient Representation Learning via Adaptive Context Pooling »
Chen Huang · Walter Talbott · Navdeep Jaitly · Joshua M Susskind -
2022 Spotlight: Efficient Representation Learning via Adaptive Context Pooling »
Chen Huang · Walter Talbott · Navdeep Jaitly · Joshua M Susskind -
2022 Poster: From data to functa: Your data point is a function and you can treat it like one »
Emilien Dupont · Hyunjik Kim · S. M. Ali Eslami · Danilo J. Rezende · Dan Rosenbaum -
2022 Spotlight: From data to functa: Your data point is a function and you can treat it like one »
Emilien Dupont · Hyunjik Kim · S. M. Ali Eslami · Danilo J. Rezende · Dan Rosenbaum -
2022 Poster: Position Prediction as an Effective Pretraining Strategy »
Shuangfei Zhai · Navdeep Jaitly · Jason Ramapuram · Dan Busbridge · Tatiana Likhomanenko · Joseph Cheng · Walter Talbott · Chen Huang · Hanlin Goh · Joshua M Susskind -
2022 Spotlight: Position Prediction as an Effective Pretraining Strategy »
Shuangfei Zhai · Navdeep Jaitly · Jason Ramapuram · Dan Busbridge · Tatiana Likhomanenko · Joseph Cheng · Walter Talbott · Chen Huang · Hanlin Goh · Joshua M Susskind -
2021 Poster: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Spotlight: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Poster: LieTransformer: Equivariant Self-Attention for Lie Groups »
Michael Hutchinson · Charline Le Lan · Sheheryar Zaidi · Emilien Dupont · Yee-Whye Teh · Hyunjik Kim -
2021 Spotlight: LieTransformer: Equivariant Self-Attention for Lie Groups »
Michael Hutchinson · Charline Le Lan · Sheheryar Zaidi · Emilien Dupont · Yee-Whye Teh · Hyunjik Kim -
2020 : Invited talk 3: Representational limitations of invertible models »
Emilien Dupont -
2019 Poster: Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment »
Chen Huang · Shuangfei Zhai · Walter Talbott · Miguel Angel Bautista Martin · Shih-Yu Sun · Carlos Guestrin · Joshua M Susskind -
2019 Oral: Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment »
Chen Huang · Shuangfei Zhai · Walter Talbott · Miguel Angel Bautista Martin · Shih-Yu Sun · Carlos Guestrin · Joshua M Susskind