Timezone: »
Motivated by the repeated sale of online ads via auctions, optimal pricing in repeated auctions has attracted a large body of research. While dynamic mechanisms offer powerful techniques to improve on both revenue and efficiency by optimizing auctions across different items, their reliance on exact distributional information of buyers' valuations (present and future) limits their use in practice. In this paper, we propose robust dynamic mechanism design. We develop a new framework to design dynamic mechanisms that are robust to both estimation errors in value distributions and strategic behavior. We apply the framework in learning environments, leading to the first policy that achieves provably low regret against the optimal dynamic mechanism in contextual auctions, where the dynamic benchmark has full and accurate distributional information.
Author Information
Yuan Deng (Duke University)
Sébastien Lahaie (Google)
Vahab Mirrokni (Google Research)
More from the Same Authors
-
2022 Poster: Tight and Robust Private Mean Estimation with Few Users »
Shyam Narayanan · Vahab Mirrokni · Hossein Esfandiari -
2022 Oral: Tight and Robust Private Mean Estimation with Few Users »
Shyam Narayanan · Vahab Mirrokni · Hossein Esfandiari -
2022 Poster: Massively Parallel $k$-Means Clustering for Perturbation Resilient Instances »
Vincent Cohen-Addad · Vahab Mirrokni · Peilin Zhong -
2022 Spotlight: Massively Parallel $k$-Means Clustering for Perturbation Resilient Instances »
Vincent Cohen-Addad · Vahab Mirrokni · Peilin Zhong -
2022 : Closing Remarks »
Vahab Mirrokni -
2022 : Private Algorithms Q/A »
Peilin Zhong · Alessandro Epasto · Vahab Mirrokni -
2022 : Graph Mining Q/A »
Vahab Mirrokni -
2022 : New Challenges in Graph Mining: Scalability, Stability, and Privacy Applications »
Vahab Mirrokni -
2022 Expo Talk Panel: Challenges Of Applying Graph Neural Networks »
Bryan Perozzi · Vahab Mirrokni -
2022 : Graph Mining at Google »
Vahab Mirrokni -
2021 Poster: Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time »
Laxman Dhulipala · David Eisenstat · Jakub Łącki · Vahab Mirrokni · Jessica Shi -
2021 Spotlight: Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time »
Laxman Dhulipala · David Eisenstat · Jakub Łącki · Vahab Mirrokni · Jessica Shi -
2021 Poster: Regularized Online Allocation Problems: Fairness and Beyond »
Santiago Balseiro · Haihao Lu · Vahab Mirrokni -
2021 Spotlight: Regularized Online Allocation Problems: Fairness and Beyond »
Santiago Balseiro · Haihao Lu · Vahab Mirrokni -
2021 Poster: Reserve Price Optimization for First Price Auctions in Display Advertising »
Zhe Feng · Sébastien Lahaie · Jon Schneider · Jinchao Ye -
2021 Poster: Revenue-Incentive Tradeoffs in Dynamic Reserve Pricing »
Yuan Deng · Sébastien Lahaie · Vahab Mirrokni · Song Zuo -
2021 Oral: Reserve Price Optimization for First Price Auctions in Display Advertising »
Zhe Feng · Sébastien Lahaie · Jon Schneider · Jinchao Ye -
2021 Spotlight: Revenue-Incentive Tradeoffs in Dynamic Reserve Pricing »
Yuan Deng · Sébastien Lahaie · Vahab Mirrokni · Song Zuo -
2020 Poster: Dual Mirror Descent for Online Allocation Problems »
Santiago Balseiro · Haihao Lu · Vahab Mirrokni -
2020 Poster: Bandits with Adversarial Scaling »
Thodoris Lykouris · Vahab Mirrokni · Renato Leme -
2019 Poster: Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity »
Matthew Fahrbach · Vahab Mirrokni · Morteza Zadimoghaddam -
2019 Poster: Categorical Feature Compression via Submodular Optimization »
Mohammad Hossein Bateni · Lin Chen · Hossein Esfandiari · Thomas Fu · Vahab Mirrokni · Afshin Rostamizadeh -
2019 Oral: Categorical Feature Compression via Submodular Optimization »
Mohammad Hossein Bateni · Lin Chen · Hossein Esfandiari · Thomas Fu · Vahab Mirrokni · Afshin Rostamizadeh -
2019 Oral: Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity »
Matthew Fahrbach · Vahab Mirrokni · Morteza Zadimoghaddam -
2019 Poster: Distributed Weighted Matching via Randomized Composable Coresets »
Sepehr Assadi · Mohammad Hossein Bateni · Vahab Mirrokni -
2019 Oral: Distributed Weighted Matching via Randomized Composable Coresets »
Sepehr Assadi · Mohammad Hossein Bateni · Vahab Mirrokni -
2019 Poster: Learning to Clear the Market »
Weiran Shen · Sébastien Lahaie · Renato Leme -
2019 Oral: Learning to Clear the Market »
Weiran Shen · Sébastien Lahaie · Renato Leme -
2018 Poster: Parallel and Streaming Algorithms for K-Core Decomposition »
Hossein Esfandiari · Silvio Lattanzi · Vahab Mirrokni -
2018 Poster: Accelerating Greedy Coordinate Descent Methods »
Haihao Lu · Robert Freund · Vahab Mirrokni -
2018 Poster: Approximate Leave-One-Out for Fast Parameter Tuning in High Dimensions »
Shuaiwen Wang · Wenda Zhou · Haihao Lu · Arian Maleki · Vahab Mirrokni -
2018 Oral: Approximate Leave-One-Out for Fast Parameter Tuning in High Dimensions »
Shuaiwen Wang · Wenda Zhou · Haihao Lu · Arian Maleki · Vahab Mirrokni -
2018 Oral: Accelerating Greedy Coordinate Descent Methods »
Haihao Lu · Robert Freund · Vahab Mirrokni -
2018 Oral: Parallel and Streaming Algorithms for K-Core Decomposition »
Hossein Esfandiari · Silvio Lattanzi · Vahab Mirrokni -
2018 Poster: Proportional Allocation: Simple, Distributed, and Diverse Matching with High Entropy »
Shipra Agarwal · Morteza Zadimoghaddam · Vahab Mirrokni -
2018 Oral: Proportional Allocation: Simple, Distributed, and Diverse Matching with High Entropy »
Shipra Agarwal · Morteza Zadimoghaddam · Vahab Mirrokni -
2017 Poster: Tight Bounds for Approximate Carathéodory and Beyond »
Vahab Mirrokni · Renato Leme · Adrian Vladu · Sam Wong -
2017 Talk: Tight Bounds for Approximate Carathéodory and Beyond »
Vahab Mirrokni · Renato Leme · Adrian Vladu · Sam Wong