Timezone: »
The Optimal Transport (a.k.a. Wasserstein) distance is an increasingly popular similarity measure for rich data domains, such as images or text documents. This raises the necessity for fast nearest neighbor search algorithms according to this distance, which poses a substantial computational bottleneck on massive datasets.
In this work we introduce Flowtree, a fast and accurate approximation algorithm for the Wasserstein-1 distance. We formally analyze its approximation factor and running time. We perform extensive experimental evaluation of nearest neighbor search algorithms in the W_1 distance on real-world dataset. Our results show that compared to previous state of the art, Flowtree achieves up to 7.4 times faster running time.
Author Information
Arturs Backurs (TTIC)
Yihe Dong (Microsoft)
I am a researcher and engineer passionate about machine learning and its applications. My interests lie primarily in geometric deep learning, robust ML, and natural language processing.
Piotr Indyk (MIT)
Ilya Razenshteyn (Microsoft Research Redmond)
Tal Wagner (MIT)
More from the Same Authors
-
2020 : (#40 / Sess. 2) HNHN: Hypergraph Networks with Hyperedge Neurons »
Yihe Dong -
2023 Poster: Data Structures for Density Estimation »
Anders Aamand · Alexandr Andoni · Justin Chen · Piotr Indyk · Shyam Narayanan · Sandeep Silwal -
2022 Poster: Streaming Algorithms for Support-Aware Histograms »
Justin Chen · Piotr Indyk · Tal Wagner -
2022 Spotlight: Streaming Algorithms for Support-Aware Histograms »
Justin Chen · Piotr Indyk · Tal Wagner -
2021 Poster: Randomized Dimensionality Reduction for Facility Location and Single-Linkage Clustering »
Shyam Narayanan · Sandeep Silwal · Piotr Indyk · Or Zamir -
2021 Spotlight: Randomized Dimensionality Reduction for Facility Location and Single-Linkage Clustering »
Shyam Narayanan · Sandeep Silwal · Piotr Indyk · Or Zamir -
2021 Poster: Faster Kernel Matrix Algebra via Density Estimation »
Arturs Backurs · Piotr Indyk · Cameron Musco · Tal Wagner -
2021 Spotlight: Faster Kernel Matrix Algebra via Density Estimation »
Arturs Backurs · Piotr Indyk · Cameron Musco · Tal Wagner -
2021 Poster: Attention is not all you need: pure attention loses rank doubly exponentially with depth »
Yihe Dong · Jean-Baptiste Cordonnier · Andreas Loukas -
2021 Oral: Attention is not all you need: pure attention loses rank doubly exponentially with depth »
Yihe Dong · Jean-Baptiste Cordonnier · Andreas Loukas -
2019 Poster: Adversarial examples from computational constraints »
Sebastien Bubeck · Yin Tat Lee · Eric Price · Ilya Razenshteyn -
2019 Poster: Composable Core-sets for Determinant Maximization: A Simple Near-Optimal Algorithm »
Sepideh Mahabadi · Piotr Indyk · Shayan Oveis Gharan · Alireza Rezaei -
2019 Poster: Scalable Fair Clustering »
Arturs Backurs · Piotr Indyk · Krzysztof Onak · Baruch Schieber · Ali Vakilian · Tal Wagner -
2019 Oral: Scalable Fair Clustering »
Arturs Backurs · Piotr Indyk · Krzysztof Onak · Baruch Schieber · Ali Vakilian · Tal Wagner -
2019 Oral: Composable Core-sets for Determinant Maximization: A Simple Near-Optimal Algorithm »
Sepideh Mahabadi · Piotr Indyk · Shayan Oveis Gharan · Alireza Rezaei -
2019 Oral: Adversarial examples from computational constraints »
Sebastien Bubeck · Yin Tat Lee · Eric Price · Ilya Razenshteyn