Timezone: »

 
Poster
Calibration, Entropy Rates, and Memory in Language Models
Mark Braverman · Xinyi Chen · Sham Kakade · Karthik Narasimhan · Cyril Zhang · Yi Zhang

Thu Jul 16 06:00 AM -- 06:45 AM & Thu Jul 16 05:00 PM -- 05:45 PM (PDT) @ None #None

Building accurate language models that capture meaningful long-term dependencies is a core challenge in natural language processing. Towards this end, we present a calibration-based approach to measure long-term discrepancies between a generative sequence model and the true distribution, and use these discrepancies to improve the model. Empirically, we show that state-of-the-art language models, including LSTMs and Transformers, are miscalibrated: the entropy rates of their generations drift dramatically upward over time. We then provide provable methods to mitigate this phenomenon. Furthermore, we show how this calibration-based approach can also be used to measure the amount of memory that language models use for prediction.

Author Information

Mark Braverman (Princeton University)
Xinyi Chen
Sham Kakade (University of Washington)

Sham Kakade is a Washington Research Foundation Data Science Chair, with a joint appointment in the Department of Computer Science and the Department of Statistics at the University of Washington, and is a co-director for the Algorithmic Foundations of Data Science Institute. He works on the mathematical foundations of machine learning and AI. Sham's thesis helped in laying the foundations of the PAC-MDP framework for reinforcement learning. With his collaborators, his additional contributions include: one of the first provably efficient policy search methods, Conservative Policy Iteration, for reinforcement learning; developing the mathematical foundations for the widely used linear bandit models and the Gaussian process bandit models; the tensor and spectral methodologies for provable estimation of latent variable models (applicable to mixture of Gaussians, HMMs, and LDA); the first sharp analysis of the perturbed gradient descent algorithm, along with the design and analysis of numerous other convex and non-convex algorithms. He is the recipient of the IBM Goldberg best paper award (in 2007) for contributions to fast nearest neighbor search and the best paper, INFORMS Revenue Management and Pricing Section Prize (2014). He has been program chair for COLT 2011. Sham was an undergraduate at Caltech, where he studied physics and worked under the guidance of John Preskill in quantum computing. He then completed his Ph.D. in computational neuroscience at the Gatsby Unit at University College London, under the supervision of Peter Dayan. He was a postdoc at the Dept. of Computer Science, University of Pennsylvania , where he broadened his studies to include computational game theory and economics from the guidance of Michael Kearns. Sham has been a Principal Research Scientist at Microsoft Research, New England, an associate professor at the Department of Statistics, Wharton, UPenn, and an assistant professor at the Toyota Technological Institute at Chicago.

Karthik Narasimhan (Princeton)
Cyril Zhang (Princeton University)
Yi Zhang (Princeton University)

More from the Same Authors