Timezone: »

Convolutional Kernel Networks for Graph-Structured Data
Dexiong Chen · Laurent Jacob · Julien Mairal

Thu Jul 16 01:00 PM -- 01:45 PM & Fri Jul 17 02:00 AM -- 02:45 AM (PDT) @ Virtual

We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps, where each node carries information about local graph substructures. On the one hand, the kernel point of view offers an unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks. We show that our method achieves state-of-the-art performance on several graph classification benchmarks, while offering simple model interpretation. Our code is freely available at https://github.com/claying/GCKN.

Author Information

Dexiong Chen (Inria)
Laurent Jacob (CNRS)
Julien Mairal (Inria)

More from the Same Authors