Timezone: »
Poster
Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime
Stéphane d'Ascoli · Maria Refinetti · Giulio Biroli · Florent Krzakala
Wed Jul 15 11:00 AM -- 11:45 AM & Thu Jul 16 12:00 AM -- 12:45 AM (PDT) @
Deep neural networks can achieve remarkable generalization performances while interpolating the training data. Rather than the U-curve emblematic of the bias-variance trade-off, their test error often follows a ``double descent"---a mark of the beneficial role of overparametrization. In this work, we develop a quantitative theory for this phenomenon in the so-called lazy learning regime of neural networks, by considering the problem of learning a high-dimensional function with random features regression. We obtain a precise asymptotic expression for the bias-variance decomposition of the test error, and show that the bias displays a phase transition at the interpolation threshold, beyond it which it remains constant. We disentangle the variances stemming from the sampling of the dataset, from the additive noise corrupting the labels, and from the initialization of the weights. We demonstrate that the latter two contributions are the crux of the double descent: they lead to the overfitting peak at the interpolation threshold and to the decay of the test error upon overparametrization. We quantify how they are suppressed by ensembling the outputs of $K$ independently initialized estimators. For $K\rightarrow \infty$, the test error is monotonously decreasing and remains constant beyond the interpolation threshold. We further compare the effects of overparametrizing, ensembling and regularizing. Finally, we present numerical experiments on classic deep learning setups to show that our results hold qualitatively in realistic lazy learning scenarios.
Author Information
Stéphane d'Ascoli (ENS)
Maria Refinetti (Laboratoire de Physique de l’Ecole Normale Supérieure Paris)
Giulio Biroli (ENS)
Florent Krzakala (ENS)
More from the Same Authors
-
2021 : On the interplay between data structure and loss function: an analytical study of generalization for classification »
Stéphane d'Ascoli · Marylou Gabrié · Levent Sagun · Giulio Biroli -
2022 Poster: The dynamics of representation learning in shallow, non-linear autoencoders »
Maria Refinetti · Sebastian Goldt -
2022 Poster: Deep symbolic regression for recurrence prediction »
Stéphane d'Ascoli · Pierre-Alexandre Kamienny · Guillaume Lample · Francois Charton -
2022 Poster: Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics for Convex Losses in High-Dimension »
Bruno Loureiro · Cedric Gerbelot · Maria Refinetti · Gabriele Sicuro · FLORENT KRZAKALA -
2022 Spotlight: Deep symbolic regression for recurrence prediction »
Stéphane d'Ascoli · Pierre-Alexandre Kamienny · Guillaume Lample · Francois Charton -
2022 Spotlight: The dynamics of representation learning in shallow, non-linear autoencoders »
Maria Refinetti · Sebastian Goldt -
2022 Spotlight: Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics for Convex Losses in High-Dimension »
Bruno Loureiro · Cedric Gerbelot · Maria Refinetti · Gabriele Sicuro · FLORENT KRZAKALA -
2022 Poster: Neural Network Pruning Denoises the Features and Makes Local Connectivity Emerge in Visual Tasks »
Franco Pellegrini · Giulio Biroli -
2022 Spotlight: Neural Network Pruning Denoises the Features and Makes Local Connectivity Emerge in Visual Tasks »
Franco Pellegrini · Giulio Biroli -
2021 Poster: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2021 Poster: Align, then memorise: the dynamics of learning with feedback alignment »
Maria Refinetti · Stéphane d'Ascoli · Ruben Ohana · Sebastian Goldt -
2021 Spotlight: Align, then memorise: the dynamics of learning with feedback alignment »
Maria Refinetti · Stéphane d'Ascoli · Ruben Ohana · Sebastian Goldt -
2021 Spotlight: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2021 Poster: ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases »
Stéphane d'Ascoli · Hugo Touvron · Matthew Leavitt · Ari Morcos · Giulio Biroli · Levent Sagun -
2021 Spotlight: ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases »
Stéphane d'Ascoli · Hugo Touvron · Matthew Leavitt · Ari Morcos · Giulio Biroli · Levent Sagun -
2020 Poster: Generalisation error in learning with random features and the hidden manifold model »
Federica Gerace · Bruno Loureiro · Florent Krzakala · Marc Mezard · Lenka Zdeborova -
2020 Poster: The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture »
Francesca Mignacco · Florent Krzakala · Yue Lu · Pierfrancesco Urbani · Lenka Zdeborova -
2019 Poster: Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models »
Stefano Sarao Mannelli · Florent Krzakala · Pierfrancesco Urbani · Lenka Zdeborova -
2019 Oral: Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models »
Stefano Sarao Mannelli · Florent Krzakala · Pierfrancesco Urbani · Lenka Zdeborova