Timezone: »

 
Poster
Extreme Multi-label Classification from Aggregated Labels
Yanyao Shen · Hsiang-Fu Yu · Sujay Sanghavi · Inderjit Dhillon

Tue Jul 14 02:00 PM -- 02:45 PM & Wed Jul 15 03:00 AM -- 03:45 AM (PDT) @ None #None

Extreme multi-label classification (XMC) is the problem of finding the relevant labels for an input, from a very large universe of possible labels. We consider XMC in the setting where labels are available only for groups of samples - but not for individual ones. Current XMC approaches are not built for such multi-instance multi-label (MIML) training data, and MIML approaches do not scale to XMC sizes. We develop a new and scalable algorithm to impute individual-sample labels from the group labels; this can be paired with any existing XMC method to solve the aggregated label problem. We characterize the statistical properties of our algorithm under mild assumptions, and provide a new end-to-end framework for MIML as an extension. Experiments on both aggregated label XMC and MIML tasks show the advantages over existing approaches.

Author Information

Yanyao Shen (UT Austin)
Hsiang-Fu Yu (Amazon)
Sujay Sanghavi (UT Austin)
Inderjit Dhillon (UT Austin & Amazon)

Inderjit Dhillon is the Gottesman Family Centennial Professor of Computer Science and Mathematics at UT Austin, where he is also the Director of the ICES Center for Big Data Analytics. His main research interests are in big data, machine learning, network analysis, linear algebra and optimization. He received his B.Tech. degree from IIT Bombay, and Ph.D. from UC Berkeley. Inderjit has received several awards, including the ICES Distinguished Research Award, the SIAM Outstanding Paper Prize, the Moncrief Grand Challenge Award, the SIAM Linear Algebra Prize, the University Research Excellence Award, and the NSF Career Award. He has published over 160 journal and conference papers, and has served on the Editorial Board of the Journal of Machine Learning Research, the IEEE Transactions of Pattern Analysis and Machine Intelligence, Foundations and Trends in Machine Learning and the SIAM Journal for Matrix Analysis and Applications. Inderjit is an ACM Fellow, an IEEE Fellow, a SIAM Fellow and an AAAS Fellow.

More from the Same Authors