Timezone: »
We consider the problem of learning high-level controls over the global structure of generated sequences, particularly in the context of symbolic music generation with complex language models. In this work, we present the Transformer autoencoder, which aggregates encodings of the input data across time to obtain a global representation of style from a given performance. We show it is possible to combine this global representation with other temporally distributed embeddings, enabling improved control over the separate aspects of performance style and melody. Empirically, we demonstrate the effectiveness of our method on various music generation tasks on the MAESTRO dataset and a YouTube dataset with 10,000+ hours of piano performances, where we achieve improvements in terms of log-likelihood and mean listening scores as compared to baselines.
Author Information
Kristy Choi (Stanford University)
Curtis Hawthorne (Google Research)
Ian Simon (Google Brain)
Monica Dinculescu (Google Brain)
Jesse Engel (Google Brain)
More from the Same Authors
-
2022 Poster: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Spotlight: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Poster: ButterflyFlow: Building Invertible Layers with Butterfly Matrices »
Chenlin Meng · Linqi Zhou · Kristy Choi · Tri Dao · Stefano Ermon -
2022 Spotlight: ButterflyFlow: Building Invertible Layers with Butterfly Matrices »
Chenlin Meng · Linqi Zhou · Kristy Choi · Tri Dao · Stefano Ermon -
2021 Poster: Robust Representation Learning via Perceptual Similarity Metrics »
Saeid A Taghanaki · Kristy Choi · Amir Hosein Khasahmadi · Anirudh Goyal -
2021 Spotlight: Robust Representation Learning via Perceptual Similarity Metrics »
Saeid A Taghanaki · Kristy Choi · Amir Hosein Khasahmadi · Anirudh Goyal -
2020 : Self-supervised Pitch Detection by Inverse Audio Synthesis »
Jesse Engel -
2020 Poster: Fair Generative Modeling via Weak Supervision »
Kristy Choi · Aditya Grover · Trisha Singh · Rui Shu · Stefano Ermon -
2019 Poster: Learning to Groove with Inverse Sequence Transformations »
Jon Gillick · Adam Roberts · Jesse Engel · Douglas Eck · David Bamman -
2019 Poster: Neural Joint Source-Channel Coding »
Kristy Choi · Kedar Tatwawadi · Aditya Grover · Tsachy Weissman · Stefano Ermon -
2019 Oral: Neural Joint Source-Channel Coding »
Kristy Choi · Kedar Tatwawadi · Aditya Grover · Tsachy Weissman · Stefano Ermon -
2019 Oral: Learning to Groove with Inverse Sequence Transformations »
Jon Gillick · Adam Roberts · Jesse Engel · Douglas Eck · David Bamman -
2018 Poster: A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music »
Adam Roberts · Jesse Engel · Colin Raffel · Curtis Hawthorne · Douglas Eck -
2018 Oral: A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music »
Adam Roberts · Jesse Engel · Colin Raffel · Curtis Hawthorne · Douglas Eck -
2017 Poster: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi -
2017 Talk: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders »
Cinjon Resnick · Adam Roberts · Jesse Engel · Douglas Eck · Sander Dieleman · Karen Simonyan · Mohammad Norouzi