Timezone: »

 
Poster
More Data Can Expand The Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen · Yifei Min · Mingrui Zhang · Amin Karbasi

Thu Jul 16 07:00 AM -- 07:45 AM & Thu Jul 16 06:00 PM -- 06:45 PM (PDT) @ None #None
Despite remarkable success in practice, modern machine learning models have been found to be susceptible to adversarial attacks that make human-imperceptible perturbations to the data, but result in serious and potentially dangerous prediction errors. To address this issue, practitioners often use adversarial training to learn models that are robust against such attacks at the cost of higher generalization error on unperturbed test sets. The conventional wisdom is that more training data should shrink the gap between the generalization error of adversarially-trained models and standard models. However, we study the training of robust classifiers for both Gaussian and Bernoulli models under $\ell_\infty$ attacks, and we prove that more data may actually increase this gap. Furthermore, our theoretical results identify if and when additional data will finally begin to shrink the gap. Lastly, we experimentally demonstrate that our results also hold for linear regression models, which may indicate that this phenomenon occurs more broadly.

Author Information

Lin Chen (Yale University)
Yifei Min (Yale University)
Mingrui Zhang (Yale University)
Amin Karbasi (Yale)
Amin Karbasi

Amin Karbasi is currently an assistant professor of Electrical Engineering, Computer Science, and Statistics at Yale University. He has been the recipient of the National Science Foundation (NSF) Career Award 2019, Office of Naval Research (ONR) Young Investigator Award 2019, Air Force Office of Scientific Research (AFOSR) Young Investigator Award 2018, DARPA Young Faculty Award 2016, National Academy of Engineering Grainger Award 2017, Amazon Research Award 2018, Google Faculty Research Award 2016, Microsoft Azure Research Award 2016, Simons Research Fellowship 2017, and ETH Research Fellowship 2013. His work has also been recognized with a number of paper awards, including Medical Image Computing and Computer Assisted Interventions Conference (MICCAI) 2017, International Conference on Artificial Intelligence and Statistics (AISTAT) 2015, IEEE ComSoc Data Storage 2013, International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2011, ACM SIGMETRICS 2010, and IEEE International Symposium on Information Theory (ISIT) 2010 (runner-up). His Ph.D. thesis received the Patrick Denantes Memorial Prize 2013 from the School of Computer and Communication Sciences at EPFL, Switzerland.

More from the Same Authors