Timezone: »
Recent work has shown generative adversarial networks (GANs) can generate highly realistic images, that are often indistinguishable (by humans) from real images. Most images so generated are not contained in the training dataset, suggesting potential for augmenting training sets with GAN-generated data. While this scenario is of particular relevance when there are limited data available, there is still the issue of training the GAN itself based on that limited data. To facilitate this, we leverage existing GAN models pretrained on large-scale datasets (like ImageNet) to introduce additional knowledge (which may not exist within the limited data), following the concept of transfer learning. Demonstrated by natural-image generation, we reveal that low-level filters (those close to observations) of both the generator and discriminator of pretrained GANs can be transferred to facilitate generation in a perceptually-distinct target domain with limited training data. To further adapt the transferred filters to the target domain, we propose adaptive filter modulation (AdaFM). An extensive set of experiments is presented to demonstrate the effectiveness of the proposed techniques on generation with limited data.
Author Information
Miaoyun Zhao (Duke University)
Yulai Cong (Duke University)
Lawrence Carin (Duke)
More from the Same Authors
-
2020 Poster: Learning Autoencoders with Relational Regularization »
Hongteng Xu · Dixin Luo · Ricardo Henao · Svati Shah · Lawrence Carin -
2020 Poster: Graph Optimal Transport for Cross-Domain Alignment »
Liqun Chen · Zhe Gan · Yu Cheng · Linjie Li · Lawrence Carin · Jingjing Liu -
2020 Poster: CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information »
Pengyu Cheng · Weituo Hao · Shuyang Dai · Jiachang Liu · Zhe Gan · Lawrence Carin -
2019 Poster: Gromov-Wasserstein Learning for Graph Matching and Node Embedding »
Hongteng Xu · Dixin Luo · Hongyuan Zha · Lawrence Carin -
2019 Oral: Gromov-Wasserstein Learning for Graph Matching and Node Embedding »
Hongteng Xu · Dixin Luo · Hongyuan Zha · Lawrence Carin -
2019 Poster: Stochastic Blockmodels meet Graph Neural Networks »
Nikhil Mehta · Lawrence Carin · Piyush Rai -
2019 Poster: Variational Annealing of GANs: A Langevin Perspective »
Chenyang Tao · Shuyang Dai · Liqun Chen · Ke Bai · Junya Chen · Chang Liu · RUIYI (ROY) ZHANG · Georgiy Bobashev · Lawrence Carin -
2019 Oral: Stochastic Blockmodels meet Graph Neural Networks »
Nikhil Mehta · Lawrence Carin · Piyush Rai -
2019 Oral: Variational Annealing of GANs: A Langevin Perspective »
Chenyang Tao · Shuyang Dai · Liqun Chen · Ke Bai · Junya Chen · Chang Liu · RUIYI (ROY) ZHANG · Georgiy Bobashev · Lawrence Carin -
2018 Poster: Learning Registered Point Processes from Idiosyncratic Observations »
Hongteng Xu · Lawrence Carin · Hongyuan Zha -
2018 Poster: Policy Optimization as Wasserstein Gradient Flows »
RUIYI (ROY) ZHANG · Changyou Chen · Chunyuan Li · Lawrence Carin -
2018 Poster: JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets »
Yunchen Pu · Shuyang Dai · Zhe Gan · Weiyao Wang · Guoyin Wang · Yizhe Zhang · Ricardo Henao · Lawrence Carin -
2018 Oral: Policy Optimization as Wasserstein Gradient Flows »
RUIYI (ROY) ZHANG · Changyou Chen · Chunyuan Li · Lawrence Carin -
2018 Oral: JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets »
Yunchen Pu · Shuyang Dai · Zhe Gan · Weiyao Wang · Guoyin Wang · Yizhe Zhang · Ricardo Henao · Lawrence Carin -
2018 Oral: Learning Registered Point Processes from Idiosyncratic Observations »
Hongteng Xu · Lawrence Carin · Hongyuan Zha -
2018 Poster: Adversarial Time-to-Event Modeling »
Paidamoyo Chapfuwa · Chenyang Tao · Chunyuan Li · Courtney Page · Benjamin Goldstein · Lawrence Carin · Ricardo Henao -
2018 Oral: Adversarial Time-to-Event Modeling »
Paidamoyo Chapfuwa · Chenyang Tao · Chunyuan Li · Courtney Page · Benjamin Goldstein · Lawrence Carin · Ricardo Henao -
2018 Poster: Continuous-Time Flows for Efficient Inference and Density Estimation »
Changyou Chen · Chunyuan Li · Liquan Chen · Wenlin Wang · Yunchen Pu · Lawrence Carin -
2018 Poster: Chi-square Generative Adversarial Network »
Chenyang Tao · Liqun Chen · Ricardo Henao · Jianfeng Feng · Lawrence Carin -
2018 Poster: Variational Inference and Model Selection with Generalized Evidence Bounds »
Liqun Chen · Chenyang Tao · RUIYI (ROY) ZHANG · Ricardo Henao · Lawrence Carin -
2018 Oral: Chi-square Generative Adversarial Network »
Chenyang Tao · Liqun Chen · Ricardo Henao · Jianfeng Feng · Lawrence Carin -
2018 Oral: Continuous-Time Flows for Efficient Inference and Density Estimation »
Changyou Chen · Chunyuan Li · Liquan Chen · Wenlin Wang · Yunchen Pu · Lawrence Carin -
2018 Oral: Variational Inference and Model Selection with Generalized Evidence Bounds »
Liqun Chen · Chenyang Tao · RUIYI (ROY) ZHANG · Ricardo Henao · Lawrence Carin -
2017 Poster: Stochastic Gradient Monomial Gamma Sampler »
Yizhe Zhang · Changyou Chen · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Adversarial Feature Matching for Text Generation »
Yizhe Zhang · Zhe Gan · Kai Fan · Zhi Chen · Ricardo Henao · Dinghan Shen · Lawrence Carin -
2017 Talk: Adversarial Feature Matching for Text Generation »
Yizhe Zhang · Zhe Gan · Kai Fan · Zhi Chen · Ricardo Henao · Dinghan Shen · Lawrence Carin -
2017 Talk: Stochastic Gradient Monomial Gamma Sampler »
Yizhe Zhang · Changyou Chen · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Deep Generative Models for Relational Data with Side Information »
Changwei Hu · Piyush Rai · Lawrence Carin -
2017 Talk: Deep Generative Models for Relational Data with Side Information »
Changwei Hu · Piyush Rai · Lawrence Carin