Timezone: »

 
Poster
Optimization and Analysis of the pAp@k Metric for Recommender Systems
Gaurush Hiranandani · Warut Vijitbenjaronk · Sanmi Koyejo · Prateek Jain

Tue Jul 14 11:00 AM -- 11:45 AM & Tue Jul 14 10:00 PM -- 10:45 PM (PDT) @ Virtual #None

Modern recommendation and notification systems must be robust to data imbalance, limitations on the number of recommendations/notifications, and heterogeneous engagement profiles across users. The pAp@k metric, which combines the partial-AUC and the precision@k metrics, was recently proposed to evaluate such recommendation systems and has been used in real-world deployments. Conceptually, pAp@k measures the probability of correctly ranking a top-ranked positive instance over top-ranked negative instances. Due to the combinatorial aspect surfaced by top-ranked points, little is known about the characteristics and optimization methods of pAp@k. In this paper, we analyze the learning-theoretic properties of pAp@k, particularly its benefits in evaluating modern recommender systems, and propose novel surrogates that are consistent under certain data regularity conditions. We then provide gradient descent based algorithms to optimize the surrogates directly. Our analysis and experimental evaluation suggest that pAp@k indeed exhibits a certain dual behavior with respect to partial-AUC and precision@k. Moreover, the proposed methods outperform all the baselines in various applications. Taken together, our results motivate the use of pAp@k for large-scale recommender systems with heterogeneous user-engagement.

Author Information

Gaurush Hiranandani (UIUC)
Warut Vijitbenjaronk (University of Illinois, Urbana-Champaign)
Sanmi Koyejo (Illinois / Google)

Sanmi (Oluwasanmi) Koyejo an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Koyejo's research interests are in the development and analysis of probabilistic and statistical machine learning techniques motivated by, and applied to various modern big data problems. He is particularly interested in the analysis of large scale neuroimaging data. Koyejo completed his Ph.D in Electrical Engineering at the University of Texas at Austin advised by Joydeep Ghosh, and completed postdoctoral research at Stanford University with a focus on developing Machine learning techniques for neuroimaging data. His postdoctoral research was primarily with Russell A. Poldrack and Pradeep Ravikumar. Koyejo has been the recipient of several awards including the outstanding NCE/ECE student award, a best student paper award from the conference on uncertainty in artificial intelligence (UAI) and a trainee award from the Organization for Human Brain Mapping (OHBM).

Prateek Jain (Microsoft Research)

More from the Same Authors