Timezone: »
The role concept provides a useful tool to design and understand complex multi-agent systems, which allows agents with a similar role to share similar behaviors. However, existing role-based methods use prior domain knowledge and predefine role structures and behaviors. In contrast, multi-agent reinforcement learning (MARL) provides flexibility and adaptability, but less efficiency in complex tasks. In this paper, we synergize these two paradigms and propose a role-oriented MARL framework (ROMA). In this framework, roles are emergent, and agents with similar roles tend to share their learning and to be specialized on certain sub-tasks. To this end, we construct a stochastic role embedding space by introducing two novel regularizers and conditioning individual policies on roles. Experiments show that our method can learn specialized, dynamic, and identifiable roles, which help our method push forward the state of the art on the StarCraft II micromanagement benchmark. Demonstrative videos are available at https://sites.google.com/view/romarl/.
Author Information
Tonghan Wang (Tsinghua University)
Heng Dong (Tsinghua)
Victor Lesser (UMASS)
Chongjie Zhang (Tsinghua University)
More from the Same Authors
-
2023 Poster: Symmetry-Aware Robot Design with Structured Subgroups »
Heng Dong · Junyu Zhang · Tonghan Wang · Chongjie Zhang -
2022 Poster: On the Role of Discount Factor in Offline Reinforcement Learning »
Hao Hu · yiqin yang · Qianchuan Zhao · Chongjie Zhang -
2022 Spotlight: On the Role of Discount Factor in Offline Reinforcement Learning »
Hao Hu · yiqin yang · Qianchuan Zhao · Chongjie Zhang -
2022 Poster: Self-Organized Polynomial-Time Coordination Graphs »
Qianlan Yang · Weijun Dong · Zhizhou Ren · Jianhao Wang · Tonghan Wang · Chongjie Zhang -
2022 Poster: Individual Reward Assisted Multi-Agent Reinforcement Learning »
Li Wang · Yupeng Zhang · Yujing Hu · Weixun Wang · Chongjie Zhang · Yang Gao · Jianye Hao · Tangjie Lv · Changjie Fan -
2022 Spotlight: Individual Reward Assisted Multi-Agent Reinforcement Learning »
Li Wang · Yupeng Zhang · Yujing Hu · Weixun Wang · Chongjie Zhang · Yang Gao · Jianye Hao · Tangjie Lv · Changjie Fan -
2022 Spotlight: Self-Organized Polynomial-Time Coordination Graphs »
Qianlan Yang · Weijun Dong · Zhizhou Ren · Jianhao Wang · Tonghan Wang · Chongjie Zhang -
2021 Poster: MetaCURE: Meta Reinforcement Learning with Empowerment-Driven Exploration »
Jin Zhang · Jianhao Wang · Hao Hu · Tong Chen · Yingfeng Chen · Changjie Fan · Chongjie Zhang -
2021 Spotlight: MetaCURE: Meta Reinforcement Learning with Empowerment-Driven Exploration »
Jin Zhang · Jianhao Wang · Hao Hu · Tong Chen · Yingfeng Chen · Changjie Fan · Chongjie Zhang -
2021 Poster: Generalizable Episodic Memory for Deep Reinforcement Learning »
Hao Hu · Jianing Ye · Guangxiang Zhu · Zhizhou Ren · Chongjie Zhang -
2021 Spotlight: Generalizable Episodic Memory for Deep Reinforcement Learning »
Hao Hu · Jianing Ye · Guangxiang Zhu · Zhizhou Ren · Chongjie Zhang