Timezone: »
Modern generative models are usually designed to match target distributions directly in the data space, where the intrinsic dimension of data can be much lower than the ambient dimension. We argue that this discrepancy may contribute to the difficulties in training generative models. We therefore propose to map both the generated and target distributions to the latent space using the encoder of a standard autoencoder, and train the generator (or decoder) to match the target distribution in the latent space. Specifically, we enforce the consistency in both the data space and the latent space with theoretically justified data and latent reconstruction losses. The resulting generative model, which we call a perceptual generative autoencoder (PGA), is then trained with a maximum likelihood or variational autoencoder (VAE) objective. With maximum likelihood, PGAs generalize the idea of reversible generative models to unrestricted neural network architectures and arbitrary number of latent dimensions. When combined with VAEs, PGAs substantially improve over the baseline VAEs in terms of sample quality. Compared to other autoencoder-based generative models using simple priors, PGAs achieve state-of-the-art FID scores on CIFAR-10 and CelebA.
Author Information
Zijun Zhang (University of Calgary)
Ruixiang ZHANG (Mila/UdeM)
Zongpeng Li (Wuhan University)
Yoshua Bengio (Montreal Institute for Learning Algorithms)
Liam Paull (Université de Montréal)
More from the Same Authors
-
2020 Workshop: Object-Oriented Learning: Perception, Representation, and Reasoning »
Sungjin Ahn · Adam Kosiorek · Jessica Hamrick · Sjoerd van Steenkiste · Yoshua Bengio -
2020 Workshop: MLRetrospectives: A Venue for Self-Reflection in ML Research »
Jessica Forde · Jesse Dodge · Mayoore Jaiswal · Ryan Lowe · Rosanne Liu · Rosanne Liu · Joelle Pineau · Yoshua Bengio -
2020 Poster: Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules »
Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: Revisiting Fundamentals of Experience Replay »
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney -
2020 Poster: Small-GAN: Speeding up GAN Training using Core-Sets »
Samrath Sinha · Han Zhang · Anirudh Goyal · Yoshua Bengio · Hugo Larochelle · Augustus Odena -
2020 Poster: Learning Structured Latent Factors from Dependent Data:A Generative Model Framework from Information-Theoretic Perspective »
Ruixiang ZHANG · Masanori Koyama · Katsuhiko Ishiguro -
2019 Workshop: AI For Social Good (AISG) »
Margaux Luck · Kris Sankaran · Tristan Sylvain · Sean McGregor · Jonnie Penn · Girmaw Abebe Tadesse · Virgile Sylvain · Myriam Côté · Lester Mackey · Rayid Ghani · Yoshua Bengio -
2019 Workshop: Climate Change: How Can AI Help? »
David Rolnick · Alexandre Lacoste · Tegan Maharaj · Jennifer Chayes · Yoshua Bengio -
2019 Poster: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations »
Alex Lamb · Jonathan Binas · Anirudh Goyal · Sandeep Subramanian · Ioannis Mitliagkas · Yoshua Bengio · Michael Mozer -
2019 Poster: Manifold Mixup: Better Representations by Interpolating Hidden States »
Vikas Verma · Alex Lamb · Christopher Beckham · Amir Najafi · Ioannis Mitliagkas · David Lopez-Paz · Yoshua Bengio -
2019 Poster: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: Manifold Mixup: Better Representations by Interpolating Hidden States »
Vikas Verma · Alex Lamb · Christopher Beckham · Amir Najafi · Ioannis Mitliagkas · David Lopez-Paz · Yoshua Bengio -
2018 Poster: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Oral: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Poster: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2018 Oral: Focused Hierarchical RNNs for Conditional Sequence Processing »
Rosemary Nan Ke · Konrad Zolna · Alessandro Sordoni · Zhouhan Lin · Adam Trischler · Yoshua Bengio · Joelle Pineau · Laurent Charlin · Christopher Pal -
2017 Workshop: Reproducibility in Machine Learning Research »
Rosemary Nan Ke · Anirudh Goyal · Alex Lamb · Joelle Pineau · Samy Bengio · Yoshua Bengio -
2017 Poster: Sharp Minima Can Generalize For Deep Nets »
Laurent Dinh · Razvan Pascanu · Samy Bengio · Yoshua Bengio -
2017 Poster: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: Sharp Minima Can Generalize For Deep Nets »
Laurent Dinh · Razvan Pascanu · Samy Bengio · Yoshua Bengio