Timezone: »
Poster
Certified Data Removal from Machine Learning Models
Chuan Guo · Tom Goldstein · Awni Hannun · Laurens van der Maaten
Thu Jul 16 08:00 AM -- 08:45 AM & Thu Jul 16 07:00 PM -- 07:45 PM (PDT) @
Good data stewardship requires removal of data at the request of the data's owner. This raises the question if and how a trained machine-learning model, which implicitly stores information about its training data, should be affected by such a removal request. Is it possible to ``remove'' data from a machine-learning model? We study this problem by defining certified removal: a very strong theoretical guarantee that a model from which data is removed cannot be distinguished from a model that never observed the data to begin with. We develop a certified-removal mechanism for linear classifiers and empirically study learning settings in which this mechanism is practical.
Author Information
Chuan Guo (Cornell University)
Tom Goldstein (University of Maryland)
Awni Hannun (Facebook AI Research)
Laurens van der Maaten (Facebook)
More from the Same Authors
-
2022 : Thinking Two Moves Ahead: Anticipating Other Users Improves Backdoor Attacks in Federated Learning »
Yuxin Wen · Jonas Geiping · Liam Fowl · Hossein Souri · Rama Chellappa · Micah Goldblum · Tom Goldstein -
2022 : Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch »
Hossein Souri · Liam Fowl · Rama Chellappa · Micah Goldblum · Tom Goldstein -
2022 : How much Data is Augmentation Worth? »
Jonas Geiping · Gowthami Somepalli · Ravid Shwartz-Ziv · Andrew Wilson · Tom Goldstein · Micah Goldblum -
2023 : Cramming: Training a Language Model on a single GPU in one day »
Jonas Geiping · Tom Goldstein -
2023 : Understanding Data Replication in Diffusion Models »
Gowthami Somepalli · Vasu Singla · Micah Goldblum · Jonas Geiping · Tom Goldstein -
2023 Oral: A Watermark for Large Language Models »
John Kirchenbauer · Jonas Geiping · Yuxin Wen · Jonathan Katz · Ian Miers · Tom Goldstein -
2023 Poster: GOAT: A Global Transformer on Large-scale Graphs »
Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Renkun Ni · C. Bayan Bruss · Tom Goldstein -
2023 Poster: A Watermark for Large Language Models »
John Kirchenbauer · Jonas Geiping · Yuxin Wen · Jonathan Katz · Ian Miers · Tom Goldstein -
2023 Poster: Cramming: Training a Language Model on a single GPU in one day. »
Jonas Geiping · Tom Goldstein -
2022 Poster: Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations »
Amin Ghiasi · Hamid Kazemi · Steven Reich · Chen Zhu · Micah Goldblum · Tom Goldstein -
2022 Spotlight: Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations »
Amin Ghiasi · Hamid Kazemi · Steven Reich · Chen Zhu · Micah Goldblum · Tom Goldstein -
2022 Poster: Certified Neural Network Watermarks with Randomized Smoothing »
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein -
2022 Spotlight: Certified Neural Network Watermarks with Randomized Smoothing »
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein -
2022 Poster: Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification »
Yuxin Wen · Jonas Geiping · Liam Fowl · Micah Goldblum · Tom Goldstein -
2022 Spotlight: Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification »
Yuxin Wen · Jonas Geiping · Liam Fowl · Micah Goldblum · Tom Goldstein -
2021 : Paper Presentation 1: Analyzing the Security of Machine Learning for Algorithmic Trading »
Avi Schwarzschild · Micah Goldblum · Tom Goldstein -
2021 Workshop: ICML Workshop on Representation Learning for Finance and E-Commerce Applications »
Senthil Kumar · Sameena Shah · Joan Bruna · Tom Goldstein · Erik Mueller · Oleg Rokhlenko · Hongxia Yang · Jianpeng Xu · Oluwatobi O Olabiyi · Charese Smiley · C. Bayan Bruss · Saurabh H Nagrecha · Svitlana Vyetrenko -
2021 Poster: Making Paper Reviewing Robust to Bid Manipulation Attacks »
Ruihan Wu · Chuan Guo · Felix Wu · Rahul Kidambi · Laurens van der Maaten · Kilian Weinberger -
2021 Spotlight: Making Paper Reviewing Robust to Bid Manipulation Attacks »
Ruihan Wu · Chuan Guo · Felix Wu · Rahul Kidambi · Laurens van der Maaten · Kilian Weinberger -
2021 Poster: Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks »
Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein -
2021 Poster: Data Augmentation for Meta-Learning »
Renkun Ni · Micah Goldblum · Amr Sharaf · Kezhi Kong · Tom Goldstein -
2021 Spotlight: Data Augmentation for Meta-Learning »
Renkun Ni · Micah Goldblum · Amr Sharaf · Kezhi Kong · Tom Goldstein -
2021 Spotlight: Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks »
Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein -
2020 Poster: Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness »
Aounon Kumar · Alexander Levine · Tom Goldstein · Soheil Feizi -
2020 Poster: Adversarial Attacks on Copyright Detection Systems »
Parsa Saadatpanah · Ali Shafahi · Tom Goldstein -
2020 Poster: Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks »
Micah Goldblum · Steven Reich · Liam Fowl · Renkun Ni · Valeriia Cherepanova · Tom Goldstein -
2020 Poster: The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent »
Karthik Abinav Sankararaman · Soham De · Zheng Xu · W. Ronny Huang · Tom Goldstein -
2020 Poster: Word-Level Speech Recognition With a Letter to Word Encoder »
Ronan Collobert · Awni Hannun · Gabriel Synnaeve -
2019 Poster: A fully differentiable beam search decoder »
Ronan Collobert · Awni Hannun · Gabriel Synnaeve -
2019 Oral: A fully differentiable beam search decoder »
Ronan Collobert · Awni Hannun · Gabriel Synnaeve -
2019 Poster: Simple Black-box Adversarial Attacks »
Chuan Guo · Jacob Gardner · Yurong You · Andrew Wilson · Kilian Weinberger -
2019 Poster: Transferable Clean-Label Poisoning Attacks on Deep Neural Nets »
Chen Zhu · W. Ronny Huang · Hengduo Li · Gavin Taylor · Christoph Studer · Tom Goldstein -
2019 Oral: Simple Black-box Adversarial Attacks »
Chuan Guo · Jacob Gardner · Yurong You · Andrew Wilson · Kilian Weinberger -
2019 Oral: Transferable Clean-Label Poisoning Attacks on Deep Neural Nets »
Chen Zhu · W. Ronny Huang · Hengduo Li · Gavin Taylor · Christoph Studer · Tom Goldstein -
2018 Poster: Linear Spectral Estimators and an Application to Phase Retrieval »
Ramina Ghods · Andrew Lan · Tom Goldstein · Christoph Studer -
2018 Oral: Linear Spectral Estimators and an Application to Phase Retrieval »
Ramina Ghods · Andrew Lan · Tom Goldstein · Christoph Studer -
2017 Poster: Adaptive Consensus ADMM for Distributed Optimization »
Zheng Xu · Gavin Taylor · Hao Li · Mario Figueiredo · Xiaoming Yuan · Tom Goldstein -
2017 Talk: Adaptive Consensus ADMM for Distributed Optimization »
Zheng Xu · Gavin Taylor · Hao Li · Mario Figueiredo · Xiaoming Yuan · Tom Goldstein -
2017 Poster: On Calibration of Modern Neural Networks »
Chuan Guo · Geoff Pleiss · Yu Sun · Kilian Weinberger -
2017 Talk: On Calibration of Modern Neural Networks »
Chuan Guo · Geoff Pleiss · Yu Sun · Kilian Weinberger -
2017 Poster: Convex Phase Retrieval without Lifting via PhaseMax »
Tom Goldstein · Christoph Studer -
2017 Talk: Convex Phase Retrieval without Lifting via PhaseMax »
Tom Goldstein · Christoph Studer