Timezone: »
The point estimates of ReLU classification networks---arguably the most widely used neural network architecture---have been shown to yield arbitrarily high confidence far away from the training data. This architecture, in conjunction with a maximum a posteriori estimation scheme, is thus not calibrated nor robust. Approximate Bayesian inference has been empirically demonstrated to improve predictive uncertainty in neural networks, although the theoretical analysis of such Bayesian approximations is limited. We theoretically analyze approximate Gaussian distributions on the weights of ReLU networks and show that they fix the overconfidence problem. Furthermore, we show that even a simplistic, thus cheap, Bayesian approximation, also fixes these issues. This indicates that a sufficient condition for a calibrated uncertainty on a ReLU network is ``to be a bit Bayesian''. These theoretical results validate the usage of last-layer Bayesian approximation and motivate a range of a fidelity-cost trade-off. We further validate these findings empirically via various standard experiments using common deep ReLU networks and Laplace approximations.
Author Information
Agustinus Kristiadi (University of Tübingen)
Matthias Hein (University of Tübingen)
Philipp Hennig (University of Tuebingen)
More from the Same Authors
-
2022 : Provably Adversarially Robust Detection of Out-of-Distribution Data (Almost) for Free »
Alexander Meinke · Julian Bitterwolf · Matthias Hein -
2022 : Sound randomized smoothing in floating-point arithmetics »
Václav Voráček · Matthias Hein -
2022 : Sound randomized smoothing in floating-point arithmetics »
Václav Voráček · Matthias Hein -
2022 : Classifiers Should Do Well Even on Their Worst Classes »
Julian Bitterwolf · Alexander Meinke · Valentyn Boreiko · Matthias Hein -
2022 : Lost in Translation: Modern Image Classifiers still degrade even under simple Translations »
Leander Kurscheidt · Matthias Hein -
2023 : Robust Semantic Segmentation: Strong Adversarial Attacks and Fast Training of Robust Models »
Francesco Croce · Naman Singh · Matthias Hein -
2023 : In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation »
Julian Bitterwolf · Maximilian Müller · Matthias Hein -
2023 Poster: In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation »
Julian Bitterwolf · Maximilian Müller · Matthias Hein -
2023 Poster: A Modern Look at the Relationship between Sharpness and Generalization »
Maksym Andriushchenko · Francesco Croce · Maximilian Müller · Matthias Hein · Nicolas Flammarion -
2023 Poster: Improving l1-Certified Robustness via Randomized Smoothing by Leveraging Box Constraints »
Václav Voráček · Matthias Hein -
2022 : Lost in Translation: Modern Image Classifiers still degrade even under simple Translations »
Leander Kurscheidt · Matthias Hein -
2022 : Classifiers Should Do Well Even on Their Worst Classes »
Julian Bitterwolf · Alexander Meinke · Valentyn Boreiko · Matthias Hein -
2022 : On the interplay of adversarial robustness and architecture components: patches, convolution and attention »
Francesco Croce · Matthias Hein -
2022 Workshop: Shift happens: Crowdsourcing metrics and test datasets beyond ImageNet »
Roland S. Zimmermann · Julian Bitterwolf · Evgenia Rusak · Steffen Schneider · Matthias Bethge · Wieland Brendel · Matthias Hein -
2022 Poster: Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities »
Julian Bitterwolf · Alexander Meinke · Maximilian Augustin · Matthias Hein -
2022 Spotlight: Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities »
Julian Bitterwolf · Alexander Meinke · Maximilian Augustin · Matthias Hein -
2022 Poster: Adversarial Robustness against Multiple and Single $l_p$-Threat Models via Quick Fine-Tuning of Robust Classifiers »
Francesco Croce · Matthias Hein -
2022 Poster: Probabilistic ODE Solutions in Millions of Dimensions »
Nicholas Krämer · Nathanael Bosch · Jonathan Schmidt · Philipp Hennig -
2022 Poster: Preconditioning for Scalable Gaussian Process Hyperparameter Optimization »
Jonathan Wenger · Geoff Pleiss · Philipp Hennig · John Cunningham · Jacob Gardner -
2022 Poster: Fenrir: Physics-Enhanced Regression for Initial Value Problems »
Filip Tronarp · Nathanael Bosch · Philipp Hennig -
2022 Poster: Provably Adversarially Robust Nearest Prototype Classifiers »
Václav Voráček · Matthias Hein -
2022 Poster: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2022 Spotlight: Adversarial Robustness against Multiple and Single $l_p$-Threat Models via Quick Fine-Tuning of Robust Classifiers »
Francesco Croce · Matthias Hein -
2022 Oral: Preconditioning for Scalable Gaussian Process Hyperparameter Optimization »
Jonathan Wenger · Geoff Pleiss · Philipp Hennig · John Cunningham · Jacob Gardner -
2022 Spotlight: Fenrir: Physics-Enhanced Regression for Initial Value Problems »
Filip Tronarp · Nathanael Bosch · Philipp Hennig -
2022 Spotlight: Probabilistic ODE Solutions in Millions of Dimensions »
Nicholas Krämer · Nathanael Bosch · Jonathan Schmidt · Philipp Hennig -
2022 Spotlight: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2022 Spotlight: Provably Adversarially Robust Nearest Prototype Classifiers »
Václav Voráček · Matthias Hein -
2021 : Discussion Panel #1 »
Hang Su · Matthias Hein · Liwei Wang · Sven Gowal · Jan Hendrik Metzen · Henry Liu · Yisen Wang -
2021 : Invited Talk #3 »
Matthias Hein -
2021 Poster: Mind the Box: $l_1$-APGD for Sparse Adversarial Attacks on Image Classifiers »
Francesco Croce · Matthias Hein -
2021 Spotlight: Mind the Box: $l_1$-APGD for Sparse Adversarial Attacks on Image Classifiers »
Francesco Croce · Matthias Hein -
2020 : Keynote #1 Matthias Hein »
Matthias Hein -
2020 Poster: Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack »
Francesco Croce · Matthias Hein -
2020 Poster: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks »
Francesco Croce · Matthias Hein -
2020 Poster: Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks »
David Stutz · Matthias Hein · Bernt Schiele -
2020 Poster: Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems »
Hans Kersting · Nicholas Krämer · Martin Schiegg · Christian Daniel · Michael Schober · Philipp Hennig -
2019 Poster: Spectral Clustering of Signed Graphs via Matrix Power Means »
Pedro Mercado · Francesco Tudisco · Matthias Hein -
2019 Oral: Spectral Clustering of Signed Graphs via Matrix Power Means »
Pedro Mercado · Francesco Tudisco · Matthias Hein