Timezone: »
We seek to align agent behavior with a user's objectives in a reinforcement learning setting with unknown dynamics, an unknown reward function, and unknown unsafe states. The user knows the rewards and unsafe states, but querying the user is expensive. We propose an algorithm that safely and efficiently learns a model of the user's reward function by posing 'what if?' questions about hypothetical agent behavior. We start with a generative model of initial states and a forward dynamics model trained on off-policy data. Our method uses these models to synthesize hypothetical behaviors, asks the user to label the behaviors with rewards, and trains a neural network to predict the rewards. The key idea is to actively synthesize the hypothetical behaviors from scratch by maximizing tractable proxies for the value of information, without interacting with the environment. We call this method reward query synthesis via trajectory optimization (ReQueST). We evaluate ReQueST with simulated users on a state-based 2D navigation task and the image-based Car Racing video game. The results show that ReQueST significantly outperforms prior methods in learning reward models that transfer to new environments with different initial state distributions. Moreover, ReQueST safely trains the reward model to detect unsafe states, and corrects reward hacking before deploying the agent.
Author Information
Siddharth Reddy (University of California, Berkeley)
Anca Dragan (University of California, Berkeley)
Sergey Levine (UC Berkeley)

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.
Shane Legg (DeepMind)
Jan Leike (U Oxford)
More from the Same Authors
-
2021 : Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability »
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan P. Adams · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Multi-Task Offline Reinforcement Learning with Conservative Data Sharing »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 : Reinforcement Learning as One Big Sequence Modeling Problem »
Michael Janner · Qiyang Li · Sergey Levine -
2021 : ReLMM: Practical RL for Learning Mobile Manipulation Skills Using Only Onboard Sensors »
Charles Sun · Jedrzej Orbik · Coline Devin · Abhishek Gupta · Glen Berseth · Sergey Levine -
2021 : Multi-Task Offline Reinforcement Learning with Conservative Data Sharing »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2022 : A Study of Causal Confusion in Preference-Based Reward Learning »
Jeremy Tien · Zhiyang He · Zackory Erickson · Anca Dragan · Daniel S Brown -
2022 : Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Dibya Ghosh · Sergey Levine · Pulkit Agrawal · Abhishek Gupta -
2023 Poster: Contextual Reliability: When Different Features Matter in Different Contexts »
Gaurav Ghosal · Amrith Setlur · Daniel S Brown · Anca Dragan · Aditi Raghunathan -
2023 Poster: Automatically Auditing Large Language Models via Discrete Optimization »
Erik Jones · Anca Dragan · Aditi Raghunathan · Jacob Steinhardt -
2023 Workshop: Interactive Learning with Implicit Human Feedback »
Andi Peng · Akanksha Saran · Andreea Bobu · Tengyang Xie · Pierre-Yves Oudeyer · Anca Dragan · John Langford -
2022 : Q/A Sergey Levine »
Sergey Levine -
2022 : Invited Speaker: Sergey Levine »
Sergey Levine -
2022 Poster: Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2022 Poster: Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Xinyang Geng · Aviral Kumar · Sergey Levine -
2022 Poster: How to Leverage Unlabeled Data in Offline Reinforcement Learning »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Chelsea Finn · Sergey Levine -
2022 Spotlight: How to Leverage Unlabeled Data in Offline Reinforcement Learning »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Chelsea Finn · Sergey Levine -
2022 Spotlight: Offline Meta-Reinforcement Learning with Online Self-Supervision »
Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine -
2022 Spotlight: Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization »
Brandon Trabucco · Xinyang Geng · Aviral Kumar · Sergey Levine -
2022 Poster: Planning with Diffusion for Flexible Behavior Synthesis »
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine -
2022 Oral: Planning with Diffusion for Flexible Behavior Synthesis »
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine -
2022 Poster: Estimating and Penalizing Induced Preference Shifts in Recommender Systems »
Micah Carroll · Anca Dragan · Stuart Russell · Dylan Hadfield-Menell -
2022 Poster: Offline RL Policies Should Be Trained to be Adaptive »
Dibya Ghosh · Anurag Ajay · Pulkit Agrawal · Sergey Levine -
2022 Oral: Offline RL Policies Should Be Trained to be Adaptive »
Dibya Ghosh · Anurag Ajay · Pulkit Agrawal · Sergey Levine -
2022 Spotlight: Estimating and Penalizing Induced Preference Shifts in Recommender Systems »
Micah Carroll · Anca Dragan · Stuart Russell · Dylan Hadfield-Menell -
2022 : Learning to interact: PARTIAL OBSERVABILITY + GAME Theory of mind on steroids »
Anca Dragan -
2022 : Learning to interact: PARTIAL OBSERVABILITY The actions you take as part of the task are the queries! »
Anca Dragan -
2022 : Q&A »
Dorsa Sadigh · Anca Dragan -
2022 Tutorial: Learning for Interactive Agents »
Dorsa Sadigh · Anca Dragan -
2022 : Learning objectives and preferences: WHAT DATA? From diverse types of human data »
Anca Dragan -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 Poster: Simple and Effective VAE Training with Calibrated Decoders »
Oleh Rybkin · Kostas Daniilidis · Sergey Levine -
2021 Poster: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Oral: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Spotlight: Simple and Effective VAE Training with Calibrated Decoders »
Oleh Rybkin · Kostas Daniilidis · Sergey Levine -
2021 Poster: Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment »
Michael Chang · Sid Kaushik · Sergey Levine · Thomas Griffiths -
2021 Poster: Conservative Objective Models for Effective Offline Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · Xinyang Geng · Sergey Levine -
2021 Spotlight: Conservative Objective Models for Effective Offline Model-Based Optimization »
Brandon Trabucco · Aviral Kumar · Xinyang Geng · Sergey Levine -
2021 Oral: Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment »
Michael Chang · Sid Kaushik · Sergey Levine · Thomas Griffiths -
2021 Poster: Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning »
Hiroki Furuta · Tatsuya Matsushima · Tadashi Kozuno · Yutaka Matsuo · Sergey Levine · Ofir Nachum · Shixiang Gu -
2021 Poster: MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven Reinforcement Learning »
Kevin Li · Abhishek Gupta · Ashwin D Reddy · Vitchyr Pong · Aurick Zhou · Justin Yu · Sergey Levine -
2021 Poster: Policy Gradient Bayesian Robust Optimization for Imitation Learning »
Zaynah Javed · Daniel Brown · Satvik Sharma · Jerry Zhu · Ashwin Balakrishna · Marek Petrik · Anca Dragan · Ken Goldberg -
2021 Poster: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2021 Spotlight: MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven Reinforcement Learning »
Kevin Li · Abhishek Gupta · Ashwin D Reddy · Vitchyr Pong · Aurick Zhou · Justin Yu · Sergey Levine -
2021 Spotlight: Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning »
Hiroki Furuta · Tatsuya Matsushima · Tadashi Kozuno · Yutaka Matsuo · Sergey Levine · Ofir Nachum · Shixiang Gu -
2021 Spotlight: Policy Gradient Bayesian Robust Optimization for Imitation Learning »
Zaynah Javed · Daniel Brown · Satvik Sharma · Jerry Zhu · Ashwin Balakrishna · Marek Petrik · Anca Dragan · Ken Goldberg -
2021 Oral: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2021 Poster: Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation »
Aurick Zhou · Sergey Levine -
2021 Poster: Value Alignment Verification »
Daniel Brown · Jordan Schneider · Anca Dragan · Scott Niekum -
2021 Poster: Model-Based Reinforcement Learning via Latent-Space Collocation »
Oleh Rybkin · Chuning Zhu · Anusha Nagabandi · Kostas Daniilidis · Igor Mordatch · Sergey Levine -
2021 Spotlight: Model-Based Reinforcement Learning via Latent-Space Collocation »
Oleh Rybkin · Chuning Zhu · Anusha Nagabandi · Kostas Daniilidis · Igor Mordatch · Sergey Levine -
2021 Spotlight: Value Alignment Verification »
Daniel Brown · Jordan Schneider · Anca Dragan · Scott Niekum -
2021 Spotlight: Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation »
Aurick Zhou · Sergey Levine -
2020 : Invited Talk 9: Prof. Sergey Levine from UC Berkeley »
Sergey Levine -
2020 : Invited Talk 7: Prof. Anca Dragan from UC Berkeley »
Anca Dragan -
2020 : "Active Learning through Physically-embodied, Synthesized-from-“scratch” Queries" »
Anca Dragan -
2020 Poster: Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions »
Michael Chang · Sid Kaushik · S. Matthew Weinberg · Thomas Griffiths · Sergey Levine -
2020 Poster: Skew-Fit: State-Covering Self-Supervised Reinforcement Learning »
Vitchyr Pong · Murtaza Dalal · Steven Lin · Ashvin Nair · Shikhar Bahl · Sergey Levine -
2020 Poster: Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts? »
Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal -
2020 Poster: Cautious Adaptation For Reinforcement Learning in Safety-Critical Settings »
Jesse Zhang · Brian Cheung · Chelsea Finn · Sergey Levine · Dinesh Jayaraman -
2019 : Sergey Levine: "Imitation, Prediction, and Model-Based Reinforcement Learning for Autonomous Driving" »
Sergey Levine -
2019 : Sergey Levine: Unsupervised Reinforcement Learning and Meta-Learning »
Sergey Levine -
2019 Workshop: ICML Workshop on Imitation, Intent, and Interaction (I3) »
Nicholas Rhinehart · Sergey Levine · Chelsea Finn · He He · Ilya Kostrikov · Justin Fu · Siddharth Reddy -
2019 : Sergei Levine: Distribution Matching and Mutual Information in Reinforcement Learning »
Sergey Levine -
2019 Workshop: Generative Modeling and Model-Based Reasoning for Robotics and AI »
Aravind Rajeswaran · Emanuel Todorov · Igor Mordatch · William Agnew · Amy Zhang · Joelle Pineau · Michael Chang · Dumitru Erhan · Sergey Levine · Kimberly Stachenfeld · Marvin Zhang -
2019 Poster: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Poster: Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables »
Kate Rakelly · Aurick Zhou · Chelsea Finn · Sergey Levine · Deirdre Quillen -
2019 Poster: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Oral: Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables »
Kate Rakelly · Aurick Zhou · Chelsea Finn · Sergey Levine · Deirdre Quillen -
2019 Oral: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Poster: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Poster: EMI: Exploration with Mutual Information »
Hyoungseok Kim · Jaekyeom Kim · Yeonwoo Jeong · Sergey Levine · Hyun Oh Song -
2019 Poster: Online Meta-Learning »
Chelsea Finn · Aravind Rajeswaran · Sham Kakade · Sergey Levine -
2019 Poster: Diagnosing Bottlenecks in Deep Q-learning Algorithms »
Justin Fu · Aviral Kumar · Matthew Soh · Sergey Levine -
2019 Oral: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Oral: EMI: Exploration with Mutual Information »
Hyoungseok Kim · Jaekyeom Kim · Yeonwoo Jeong · Sergey Levine · Hyun Oh Song -
2019 Oral: Diagnosing Bottlenecks in Deep Q-learning Algorithms »
Justin Fu · Aviral Kumar · Matthew Soh · Sergey Levine -
2019 Oral: Online Meta-Learning »
Chelsea Finn · Aravind Rajeswaran · Sham Kakade · Sergey Levine -
2019 Tutorial: Meta-Learning: from Few-Shot Learning to Rapid Reinforcement Learning »
Chelsea Finn · Sergey Levine -
2019 Tutorial: Safe Machine Learning »
Silvia Chiappa · Jan Leike -
2018 Poster: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Oral: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning »
Dhruv Malik · Malayandi Palaniappan · Jaime Fisac · Dylan Hadfield-Menell · Stuart Russell · Anca Dragan -
2018 Poster: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Poster: Regret Minimization for Partially Observable Deep Reinforcement Learning »
Peter Jin · EECS Kurt Keutzer · Sergey Levine -
2018 Poster: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Oral: Regret Minimization for Partially Observable Deep Reinforcement Learning »
Peter Jin · EECS Kurt Keutzer · Sergey Levine -
2018 Oral: An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning »
Dhruv Malik · Malayandi Palaniappan · Jaime Fisac · Dylan Hadfield-Menell · Stuart Russell · Anca Dragan -
2018 Oral: Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor »
Tuomas Haarnoja · Aurick Zhou · Pieter Abbeel · Sergey Levine -
2018 Oral: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Poster: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2018 Poster: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Poster: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Universal Planning Networks: Learning Generalizable Representations for Visuomotor Control »
Aravind Srinivas · Allan Jabri · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2018 Oral: Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings »
John Co-Reyes · Yu Xuan Liu · Abhishek Gupta · Benjamin Eysenbach · Pieter Abbeel · Sergey Levine -
2018 Oral: Latent Space Policies for Hierarchical Reinforcement Learning »
Tuomas Haarnoja · Kristian Hartikainen · Pieter Abbeel · Sergey Levine -
2017 : Lifelong Learning - Panel Discussion »
Sergey Levine · Joelle Pineau · Balaraman Ravindran · Andrei A Rusu -
2017 : Sergey Levine: Self-supervision as a path to lifelong learning »
Sergey Levine -
2017 Poster: Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning »
Yevgen Chebotar · Karol Hausman · Marvin Zhang · Gaurav Sukhatme · Stefan Schaal · Sergey Levine -
2017 Talk: Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning »
Yevgen Chebotar · Karol Hausman · Marvin Zhang · Gaurav Sukhatme · Stefan Schaal · Sergey Levine -
2017 Poster: Modular Multitask Reinforcement Learning with Policy Sketches »
Jacob Andreas · Dan Klein · Sergey Levine -
2017 Poster: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Poster: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Talk: Modular Multitask Reinforcement Learning with Policy Sketches »
Jacob Andreas · Dan Klein · Sergey Levine -
2017 Talk: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks »
Chelsea Finn · Pieter Abbeel · Sergey Levine -
2017 Talk: Reinforcement Learning with Deep Energy-Based Policies »
Tuomas Haarnoja · Haoran Tang · Pieter Abbeel · Sergey Levine -
2017 Tutorial: Deep Reinforcement Learning, Decision Making, and Control »
Sergey Levine · Chelsea Finn