Timezone: »
We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods.
Author Information
Wei Zhang (Facebook Inc.)
Thomas Panum (Aalborg University)
Somesh Jha (University of Wisconsin, Madison)
Prasad Chalasani (XaiPient)
Prasad Chalasani is CEO of XaiPient, whose mission is Explainable AI for Humans. He has a BTech in Computer. Science from IIT, Kharagpur, and a PhD in ML from Carnegie Mellon University. His previous roles include Quant Researcher and Portfolio Manager at hedge funds (WorldQuant, HBK), and he has lead quant research and data science teams at Goldman Sachs and Yahoo. Most recently he was Chief Scientist at MediaMath, leading ML for advertising.
David Page (Duke)
More from the Same Authors
-
2021 : A Shuffling Framework For Local Differential Privacy »
Casey M Meehan · Amrita Roy Chowdhury · Kamalika Chaudhuri · Somesh Jha -
2022 : The Trade-off between Label Efficiency and Universality of Representations from Contrastive Learning »
Zhenmei Shi · Zhenmei Shi · Jiefeng Chen · Jiefeng Chen · Kunyang Li · Kunyang Li · Jayaram Raghuram · Jayaram Raghuram · Xi Wu · Xi Wu · Yingyiu Liang · Yingyiu Liang · Somesh Jha · Somesh Jha -
2023 Poster: Concept-based Explanations for Out-of-Distribution Detectors »
Jihye Choi · Jayaram Raghuram · Ryan Feng · Jiefeng Chen · Somesh Jha · Atul Prakash -
2023 Poster: Stratified Adversarial Robustness with Rejection »
Jiefeng Chen · Jayaram Raghuram · Jihye Choi · Xi Wu · Yingyiu Liang · Somesh Jha -
2022 : Adversarial Robustness and Cryptography »
Somesh Jha -
2021 Poster: A General Framework For Detecting Anomalous Inputs to DNN Classifiers »
Jayaram Raghuram · Varun Chandrasekaran · Somesh Jha · Suman Banerjee -
2021 Oral: A General Framework For Detecting Anomalous Inputs to DNN Classifiers »
Jayaram Raghuram · Varun Chandrasekaran · Somesh Jha · Suman Banerjee -
2021 Poster: Sample Complexity of Robust Linear Classification on Separated Data »
Robi Bhattacharjee · Somesh Jha · Kamalika Chaudhuri -
2021 Spotlight: Sample Complexity of Robust Linear Classification on Separated Data »
Robi Bhattacharjee · Somesh Jha · Kamalika Chaudhuri -
2020 Poster: Data-Dependent Differentially Private Parameter Learning for Directed Graphical Models »
Amrita Roy Chowdhury · Theodoros Rekatsinas · Somesh Jha -
2020 Poster: Concise Explanations of Neural Networks using Adversarial Training »
Prasad Chalasani · Jiefeng Chen · Amrita Roy Chowdhury · Xi Wu · Somesh Jha -
2019 Workshop: Workshop on the Security and Privacy of Machine Learning »
Nicolas Papernot · Florian Tramer · Bo Li · Dan Boneh · David Evans · Somesh Jha · Percy Liang · Patrick McDaniel · Jacob Steinhardt · Dawn Song -
2018 Poster: Analyzing the Robustness of Nearest Neighbors to Adversarial Examples »
Yizhen Wang · Somesh Jha · Kamalika Chaudhuri -
2018 Oral: Analyzing the Robustness of Nearest Neighbors to Adversarial Examples »
Yizhen Wang · Somesh Jha · Kamalika Chaudhuri -
2018 Poster: Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training »
Xi Wu · Wooyeong Jang · Jiefeng Chen · Lingjiao Chen · Somesh Jha -
2018 Oral: Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training »
Xi Wu · Wooyeong Jang · Jiefeng Chen · Lingjiao Chen · Somesh Jha