Timezone: »
We consider imbalanced classification, the problem in which a label may have low marginal probability relative to other labels, by weighting losses according to the correct class. First, we examine the convergence rates of the expected excess weighted risk of plug-in classifiers where the weighting for the plug-in classifier and the risk may be different. This leads to irreducible errors that do not converge to the weighted Bayes risk, which motivates our consideration of robust risks. We define a robust risk that minimizes risk over a set of weightings, show excess risk bounds for this problem, and demonstrate that particular choices of the weighting set leads to a special instance of conditional value at risk (CVaR) from stochastic programming, which we call label conditional value at risk (LCVaR). Additionally, we generalize this weighting to derive a new robust risk problem that we call label heterogeneous conditional value at risk (LHCVaR). Finally, we empirically demonstrate the efficacy of LCVaR and LHCVaR on improving class conditional risks.
Author Information
Ziyu Xu (Carnegie Mellon University)
Chen Dan (Carnegie Mellon University)
Justin Khim (Carnegie Mellon University)
Pradeep Ravikumar (Carnegie Mellon University)
More from the Same Authors
-
2021 : When Is Generalizable Reinforcement Learning Tractable? »
Dhruv Malik · Yuanzhi Li · Pradeep Ravikumar -
2023 : Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models »
Tianyu Chen · Kevin Bello · Bryon Aragam · Pradeep Ravikumar -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Learning with Explanation Constraints »
Rattana Pukdee · Dylan Sam · Nina Balcan · Pradeep Ravikumar -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Global Optimality in Bivariate Gradient-based DAG Learning »
Chang Deng · Kevin Bello · Pradeep Ravikumar · Bryon Aragam -
2023 Poster: Optimizing NOTEARS Objectives via Topological Swaps »
Chang Deng · Kevin Bello · Bryon Aragam · Pradeep Ravikumar -
2023 Poster: Representer Point Selection for Explaining Regularized High-dimensional Models »
Che-Ping Tsai · Jiong Zhang · Hsiang-Fu Yu · Eli Chien · Cho-Jui Hsieh · Pradeep Ravikumar -
2023 Poster: Faith-Shap: The Faithful Shapley Interaction Index »
Che-Ping Tsai · Chih-Kuan Yeh · Pradeep Ravikumar -
2022 Poster: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Spotlight: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2021 Poster: DORO: Distributional and Outlier Robust Optimization »
Runtian Zhai · Chen Dan · Zico Kolter · Pradeep Ravikumar -
2021 Spotlight: DORO: Distributional and Outlier Robust Optimization »
Runtian Zhai · Chen Dan · Zico Kolter · Pradeep Ravikumar -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2020 Poster: Uniform Convergence of Rank-weighted Learning »
Justin Khim · Liu Leqi · Adarsh Prasad · Pradeep Ravikumar -
2020 Poster: Sharp Statistical Guaratees for Adversarially Robust Gaussian Classification »
Chen Dan · Yuting Wei · Pradeep Ravikumar -
2020 Poster: Certified Robustness to Label-Flipping Attacks via Randomized Smoothing »
Elan Rosenfeld · Ezra Winston · Pradeep Ravikumar · Zico Kolter -
2018 Poster: Binary Classification with Karmic, Threshold-Quasi-Concave Metrics »
Bowei Yan · Sanmi Koyejo · Kai Zhong · Pradeep Ravikumar -
2018 Poster: Loss Decomposition for Fast Learning in Large Output Spaces »
En-Hsu Yen · Satyen Kale · Felix Xinnan Yu · Daniel Holtmann-Rice · Sanjiv Kumar · Pradeep Ravikumar -
2018 Oral: Binary Classification with Karmic, Threshold-Quasi-Concave Metrics »
Bowei Yan · Sanmi Koyejo · Kai Zhong · Pradeep Ravikumar -
2018 Oral: Loss Decomposition for Fast Learning in Large Output Spaces »
En-Hsu Yen · Satyen Kale · Felix Xinnan Yu · Daniel Holtmann-Rice · Sanjiv Kumar · Pradeep Ravikumar -
2018 Poster: Deep Density Destructors »
David Inouye · Pradeep Ravikumar -
2018 Oral: Deep Density Destructors »
David Inouye · Pradeep Ravikumar -
2017 Poster: Ordinal Graphical Models: A Tale of Two Approaches »
ARUN SAI SUGGALA · Eunho Yang · Pradeep Ravikumar -
2017 Poster: Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization »
Qi Lei · En-Hsu Yen · Chao-Yuan Wu · Inderjit Dhillon · Pradeep Ravikumar -
2017 Poster: Latent Feature Lasso »
En-Hsu Yen · Wei-Cheng Lee · Sung-En Chang · Arun Suggala · Shou-De Lin · Pradeep Ravikumar -
2017 Talk: Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization »
Qi Lei · En-Hsu Yen · Chao-Yuan Wu · Inderjit Dhillon · Pradeep Ravikumar -
2017 Talk: Ordinal Graphical Models: A Tale of Two Approaches »
ARUN SAI SUGGALA · Eunho Yang · Pradeep Ravikumar -
2017 Talk: Latent Feature Lasso »
En-Hsu Yen · Wei-Cheng Lee · Sung-En Chang · Arun Suggala · Shou-De Lin · Pradeep Ravikumar