Timezone: »
Deep neural networks have achieved great success in various areas, but recent works have found that neural networks are vulnerable to adversarial attacks, which leads to a hot topic nowadays. Although many approaches have been proposed to enhance the robustness of neural networks, few of them explored robust architectures for neural networks. On this account, we try to address such an issue from the perspective of dynamic system in this work. By viewing ResNet as an explicit Euler discretization of an ordinary differential equation~(ODE), for the first time, we find that the adversarial robustness of ResNet is connected to the numerical stability of the corresponding dynamic system, i.e., more stable numerical schemes may correspond to more robust deep networks. Furthermore, inspired by the implicit Euler method for solving numerical ODE problems, we propose Implicit Euler skip connections~(IE-Skips) by modifying the original skip connection in ResNet or its variants. Then we theoretically prove its advantages under the adversarial attack and the experimental results show that our ResNet with IE-Skips can largely improve the robustness and the generalization ability under adversarial attacks when compared with the vanilla ResNet of the same parameter size.
Author Information
Mingjie Li (Peking University)
Lingshen He (Peking University)
Zhouchen Lin (Peking University)
More from the Same Authors
-
2021 : Demystifying Adversarial Training via A Unified Probabilistic Framework »
Yisen Wang · Jiansheng Yang · Zhouchen Lin · Yifei Wang -
2022 Poster: PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs »
Zhengyang Shen · Tao Hong · Qi She · Jinwen Ma · Zhouchen Lin -
2022 Spotlight: PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs »
Zhengyang Shen · Tao Hong · Qi She · Jinwen Ma · Zhouchen Lin -
2022 Poster: Kill a Bird with Two Stones: Closing the Convergence Gaps in Non-Strongly Convex Optimization by Directly Accelerated SVRG with Double Compensation and Snapshots »
Yuanyuan Liu · Fanhua Shang · Weixin An · Hongying Liu · Zhouchen Lin -
2022 Spotlight: Kill a Bird with Two Stones: Closing the Convergence Gaps in Non-Strongly Convex Optimization by Directly Accelerated SVRG with Double Compensation and Snapshots »
Yuanyuan Liu · Fanhua Shang · Weixin An · Hongying Liu · Zhouchen Lin -
2022 Poster: Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the $O(\epsilon^{-7/4})$ Complexity »
Huan Li · Zhouchen Lin -
2022 Poster: CerDEQ: Certifiable Deep Equilibrium Model »
Mingjie Li · Yisen Wang · Zhouchen Lin -
2022 Poster: G$^2$CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters »
Mingjie Li · Xiaojun Guo · Yifei Wang · Yisen Wang · Zhouchen Lin -
2022 Poster: Optimization-Induced Graph Implicit Nonlinear Diffusion »
Qi Chen · Yifei Wang · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2022 Spotlight: Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the $O(\epsilon^{-7/4})$ Complexity »
Huan Li · Zhouchen Lin -
2022 Spotlight: CerDEQ: Certifiable Deep Equilibrium Model »
Mingjie Li · Yisen Wang · Zhouchen Lin -
2022 Spotlight: Optimization-Induced Graph Implicit Nonlinear Diffusion »
Qi Chen · Yifei Wang · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2022 Spotlight: G$^2$CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters »
Mingjie Li · Xiaojun Guo · Yifei Wang · Yisen Wang · Zhouchen Lin -
2021 Poster: GBHT: Gradient Boosting Histogram Transform for Density Estimation »
Jingyi Cui · Hanyuan Hang · Yisen Wang · Zhouchen Lin -
2021 Poster: Leveraged Weighted Loss for Partial Label Learning »
Hongwei Wen · Jingyi Cui · Hanyuan Hang · Jiabin Liu · Yisen Wang · Zhouchen Lin -
2021 Spotlight: GBHT: Gradient Boosting Histogram Transform for Density Estimation »
Jingyi Cui · Hanyuan Hang · Yisen Wang · Zhouchen Lin -
2021 Oral: Leveraged Weighted Loss for Partial Label Learning »
Hongwei Wen · Jingyi Cui · Hanyuan Hang · Jiabin Liu · Yisen Wang · Zhouchen Lin -
2021 Poster: Uncertainty Principles of Encoding GANs »
Ruili Feng · Zhouchen Lin · Jiapeng Zhu · Deli Zhao · Jingren Zhou · Zheng-Jun Zha -
2021 Spotlight: Uncertainty Principles of Encoding GANs »
Ruili Feng · Zhouchen Lin · Jiapeng Zhu · Deli Zhao · Jingren Zhou · Zheng-Jun Zha -
2020 Poster: PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions »
Zhengyang Shen · Lingshen He · Zhouchen Lin · Jinwen Ma -
2020 Poster: Boosted Histogram Transform for Regression »
Yuchao Cai · Hanyuan Hang · Hanfang Yang · Zhouchen Lin -
2020 Poster: Maximum-and-Concatenation Networks »
Xingyu Xie · Hao Kong · Jianlong Wu · Wayne Zhang · Guangcan Liu · Zhouchen Lin -
2019 Poster: Differentiable Linearized ADMM »
Xingyu Xie · Jianlong Wu · Guangcan Liu · Zhisheng Zhong · Zhouchen Lin -
2019 Oral: Differentiable Linearized ADMM »
Xingyu Xie · Jianlong Wu · Guangcan Liu · Zhisheng Zhong · Zhouchen Lin