Timezone: »

 
Poster
Automatic Reparameterisation of Probabilistic Programs
Maria Gorinova · Dave Moore · Matthew Hoffman

Wed Jul 15 12:00 PM -- 12:45 PM & Thu Jul 16 01:00 AM -- 01:45 AM (PDT) @

Probabilistic programming has emerged as a powerful paradigm in statistics, applied science, and machine learning: by decoupling modelling from inference, it promises to allow modellers to directly reason about the processes generating data. However, the performance of inference algorithms can be dramatically affected by the parameterisation used to express a model, requiring users to transform their programs in non-intuitive ways. We argue for automating these transformations, and demonstrate that mechanisms available in recent modelling frameworks can implement non-centring and related reparameterisations. This enables new inference algorithms, and we propose two: a simple approach using interleaved sampling and a novel variational formulation that searches over a continuous space of parameterisations. We show that these approaches enable robust inference across a range of models, and can yield more efficient samplers than the best fixed parameterisation.

Author Information

Maria Gorinova (University of Edinburgh)
Dave Moore (Google)
Matthew Hoffman (Google)

More from the Same Authors

  • 2021 Poster: GRAND: Graph Neural Diffusion »
    Ben Chamberlain · James Rowbottom · Maria Gorinova · Michael Bronstein · Stefan Webb · Emanuele Rossi
  • 2021 Spotlight: GRAND: Graph Neural Diffusion »
    Ben Chamberlain · James Rowbottom · Maria Gorinova · Michael Bronstein · Stefan Webb · Emanuele Rossi
  • 2021 Poster: What Are Bayesian Neural Network Posteriors Really Like? »
    Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson
  • 2021 Oral: What Are Bayesian Neural Network Posteriors Really Like? »
    Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson
  • 2020 Poster: Black-Box Variational Inference as a Parametric Approximation to Langevin Dynamics »
    Matthew Hoffman · Yian Ma
  • 2019 : Networking Lunch (provided) + Poster Session »
    Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki
  • 2017 Poster: Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo »
    Matthew Hoffman
  • 2017 Talk: Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo »
    Matthew Hoffman