Timezone: »

Submodular Optimization: From Discrete to Continuous and Back
Hamed Hassani · Amin Karbasi

Mon Jul 13 08:00 AM -- 11:00 AM & Mon Jul 13 06:00 PM -- 09:00 PM (PDT) @ None

This tutorial will cover recent advancements in discrete optimization methods prevalent in large-scale machine learning problems. Traditionally, machine learning has been harnessing convex optimization to design fast algorithms with provable guarantees for a broad range of applications. In recent years, however, there has been a surge of interest in applications that involve discrete optimization. For discrete domains, the analog of convexity is considered to be submodularity, and the evolving theory of submodular optimization has been a catalyst for progress in extraordinarily varied application areas including active learning and experimental design, vision, sparse reconstruction, graph inference, video analysis, clustering, document summarization, object detection, information retrieval, network inference, interpreting neural network, and discrete adversarial attacks.

As applications and techniques of submodular optimization mature, a fundamental gap between theory and application emerges. In the past decade, paradigms such as large-scale learning, distributed systems, and sequential decision making have enabled a quantum leap in the performance of learning methodologies. Incorporating these paradigms in discrete problems has led to fundamentally new frameworks for submodular optimization. The goal of this tutorial is to cover rigorous and scalable foundations for discrete optimization in complex, dynamic environments, addressing challenges of scalability and uncertainty, and facilitating distributed and sequential learning in broader discrete settings.

Here is the website for the tutorial that contains further details as well as the slides: http://iid.yale.edu/icml/icml-20.md/

Author Information

Hamed Hassani (University of Pennsylvania)
Hamed Hassani

I am an assistant professor in the Department of Electrical and Systems Engineering (as of July 2017). I hold a secondary appointment in the Department of Computer and Information Systems. I am also a faculty affiliate of the Warren Center for Network and Data Sciences. Before joining Penn, I was a research fellow at the Simons Institute, UC Berkeley (program: Foundations of Machine Learning). Prior to that, I was a post-doctoral scholar and lecturer in the Institute for Machine Learning at ETH Z├╝rich. I received my Ph.D. degree in Computer and Communication Sciences from EPFL.

Amin Karbasi (Yale)
Amin Karbasi

Amin Karbasi is currently an assistant professor of Electrical Engineering, Computer Science, and Statistics at Yale University. He has been the recipient of the National Science Foundation (NSF) Career Award 2019, Office of Naval Research (ONR) Young Investigator Award 2019, Air Force Office of Scientific Research (AFOSR) Young Investigator Award 2018, DARPA Young Faculty Award 2016, National Academy of Engineering Grainger Award 2017, Amazon Research Award 2018, Google Faculty Research Award 2016, Microsoft Azure Research Award 2016, Simons Research Fellowship 2017, and ETH Research Fellowship 2013. His work has also been recognized with a number of paper awards, including Medical Image Computing and Computer Assisted Interventions Conference (MICCAI) 2017, International Conference on Artificial Intelligence and Statistics (AISTAT) 2015, IEEE ComSoc Data Storage 2013, International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2011, ACM SIGMETRICS 2010, and IEEE International Symposium on Information Theory (ISIT) 2010 (runner-up). His Ph.D. thesis received the Patrick Denantes Memorial Prize 2013 from the School of Computer and Communication Sciences at EPFL, Switzerland.

More from the Same Authors