Timezone: »
The field of representation learning without labels, also known as unsupervised or self-supervised learning, is seeing significant progress. New techniques have been put forward that approach or even exceed the performance of fully supervised techniques in large-scale and competitive benchmarks such as image classification, while also showing improvements in label-efficiency by multiple orders of magnitude. Representation learning without labels is therefore finally starting to address some of the major challenges in modern deep learning. To continue making progress, however, it is important to systematically understand the nature of the learnt representations and the learning objectives that give rise to them.
In this tutorial we will: - Provide a unifying overview of the state of the art in representation learning without labels, - Contextualise these methods through a number of theoretical lenses, including generative modelling, manifold learning and causality, - Argue for the importance of careful and systematic evaluation of representations and provide an overview of the pros and cons of current evaluation methods.
Author Information
S. M. Ali Eslami (DeepMind)

S. M. Ali Eslami is a staff research scientist at DeepMind working on problems related to artificial intelligence. Prior to that, he was a post-doctoral researcher at Microsoft Research in Cambridge. He did his PhD in the School of Informatics at the University of Edinburgh, during which he was also a visiting researcher in the Visual Geometry Group at the University of Oxford. His research is focused on figuring out how we can get computers to learn with less human supervision.
Irina Higgins (DeepMind)

Irina Higgins is a research scientist at DeepMind, where she works in the Froniers team. Her work aims to bring together insights from the fields of neuroscience and physics to advance general artificial intelligence through improved representation learning. Before joining DeepMind, Irina was a British Psychological Society Undergraduate Award winner for her achievements as an undergraduate student in Experimental Psychology at Westminster University, followed by a DPhil at the Oxford Centre for Computational Neuroscience and Artificial Intelligence, where she focused on understanding the computational principles underlying speech processing in the auditory brain. During her DPhil, Irina also worked on developing poker AI, applying machine learning in the finance sector, and working on speech recognition at Google Research.
Danilo J. Rezende (DeepMind)

Danilo is a Senior Staff Research Scientist at Google DeepMind, where he works on probabilistic machine reasoning and learning algorithms. He has a BA in Physics and MSc in Theoretical Physics from Ecole Polytechnique (Palaiseau – France) and from the Institute of Theoretical Physics (SP – Brazil) and a Ph.D. in Computational Neuroscience at Ecole Polytechnique Federale de Lausanne, EPFL (Lausanne – Switzerland). His research focuses on scalable inference methods, generative models of complex data (such as images and video), applied probability, causal reasoning and unsupervised learning for decision-making.
More from the Same Authors
-
2022 : Learning to induce causal structure »
Rosemary Nan Ke · Silvia Chiappa · Jane Wang · Jorg Bornschein · Anirudh Goyal · Melanie Rey · Matthew Botvinick · Theophane Weber · Michael Mozer · Danilo J. Rezende -
2022 Poster: From data to functa: Your data point is a function and you can treat it like one »
Emilien Dupont · Hyunjik Kim · S. M. Ali Eslami · Danilo J. Rezende · Dan Rosenbaum -
2022 Spotlight: From data to functa: Your data point is a function and you can treat it like one »
Emilien Dupont · Hyunjik Kim · S. M. Ali Eslami · Danilo J. Rezende · Dan Rosenbaum -
2022 Poster: Continual Repeated Annealed Flow Transport Monte Carlo »
Alexander Matthews · Michael Arbel · Danilo J. Rezende · Arnaud Doucet -
2022 Spotlight: Continual Repeated Annealed Flow Transport Monte Carlo »
Alexander Matthews · Michael Arbel · Danilo J. Rezende · Arnaud Doucet -
2021 Workshop: INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models »
Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Ricky T. Q. Chen · Danilo J. Rezende -
2021 Oral: NeRF-VAE: A Geometry Aware 3D Scene Generative Model »
Adam Kosiorek · Heiko Strathmann · Daniel Zoran · Pol Moreno · Rosalia Schneider · Sona Mokra · Danilo J. Rezende -
2021 Poster: NeRF-VAE: A Geometry Aware 3D Scene Generative Model »
Adam Kosiorek · Heiko Strathmann · Daniel Zoran · Pol Moreno · Rosalia Schneider · Sona Mokra · Danilo J. Rezende -
2020 Workshop: INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models »
Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Chris Cremer · Ricky T. Q. Chen · Danilo J. Rezende -
2020 Poster: PolyGen: An Autoregressive Generative Model of 3D Meshes »
Charlie Nash · Yaroslav Ganin · S. M. Ali Eslami · Peter Battaglia -
2020 Poster: Normalizing Flows on Tori and Spheres »
Danilo J. Rezende · George Papamakarios · Sebastien Racaniere · Michael Albergo · Gurtej Kanwar · Phiala Shanahan · Kyle Cranmer -
2019 Workshop: Invertible Neural Networks and Normalizing Flows »
Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Aidan Gomez · Chris Cremer · Aaron Courville · Ricky T. Q. Chen · Danilo J. Rezende -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Poster spotlights »
Roman Novak · Frederic Dreyer · Siavash Golkar · Irina Higgins · Joe Antognini · Ryo Karakida · Rohan Ghosh -
2018 Poster: Synthesizing Programs for Images using Reinforced Adversarial Learning »
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals -
2018 Oral: Synthesizing Programs for Images using Reinforced Adversarial Learning »
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals -
2018 Poster: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Poster: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Poster: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami -
2018 Oral: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Oral: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Oral: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami -
2017 Poster: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Irina Higgins · Arka Pal · Andrei A Rusu · Loic Matthey · Christopher Burgess · Alexander Pritzel · Matthew Botvinick · Charles Blundell · Alexander Lerchner -
2017 Talk: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Irina Higgins · Arka Pal · Andrei A Rusu · Loic Matthey · Christopher Burgess · Alexander Pritzel · Matthew Botvinick · Charles Blundell · Alexander Lerchner