Timezone: »

 
Tutorial
Representation Learning Without Labels
S. M. Ali Eslami · Irina Higgins · Danilo J. Rezende

Mon Jul 13 01:00 AM -- 04:00 AM & Mon Jul 13 11:00 AM -- 02:00 PM (PDT) @

The field of representation learning without labels, also known as unsupervised or self-supervised learning, is seeing significant progress. New techniques have been put forward that approach or even exceed the performance of fully supervised techniques in large-scale and competitive benchmarks such as image classification, while also showing improvements in label-efficiency by multiple orders of magnitude. Representation learning without labels is therefore finally starting to address some of the major challenges in modern deep learning. To continue making progress, however, it is important to systematically understand the nature of the learnt representations and the learning objectives that give rise to them.

In this tutorial we will: - Provide a unifying overview of the state of the art in representation learning without labels, - Contextualise these methods through a number of theoretical lenses, including generative modelling, manifold learning and causality, - Argue for the importance of careful and systematic evaluation of representations and provide an overview of the pros and cons of current evaluation methods.

Author Information

S. M. Ali Eslami (DeepMind)
S. M. Ali Eslami

S. M. Ali Eslami is a staff research scientist at DeepMind working on problems related to artificial intelligence. Prior to that, he was a post-doctoral researcher at Microsoft Research in Cambridge. He did his PhD in the School of Informatics at the University of Edinburgh, during which he was also a visiting researcher in the Visual Geometry Group at the University of Oxford. His research is focused on figuring out how we can get computers to learn with less human supervision.

Irina Higgins (DeepMind)
Irina Higgins

Irina Higgins is a research scientist at DeepMind, where she works in the Froniers team. Her work aims to bring together insights from the fields of neuroscience and physics to advance general artificial intelligence through improved representation learning. Before joining DeepMind, Irina was a British Psychological Society Undergraduate Award winner for her achievements as an undergraduate student in Experimental Psychology at Westminster University, followed by a DPhil at the Oxford Centre for Computational Neuroscience and Artificial Intelligence, where she focused on understanding the computational principles underlying speech processing in the auditory brain. During her DPhil, Irina also worked on developing poker AI, applying machine learning in the finance sector, and working on speech recognition at Google Research.

Danilo J. Rezende (DeepMind)
Danilo J. Rezende

Danilo is a Senior Staff Research Scientist at Google DeepMind, where he works on probabilistic machine reasoning and learning algorithms. He has a BA in Physics and MSc in Theoretical Physics from Ecole Polytechnique (Palaiseau – France) and from the Institute of Theoretical Physics (SP – Brazil) and a Ph.D. in Computational Neuroscience at Ecole Polytechnique Federale de Lausanne, EPFL (Lausanne – Switzerland). His research focuses on scalable inference methods, generative models of complex data (such as images and video), applied probability, causal reasoning and unsupervised learning for decision-making.

More from the Same Authors